When President Bill Clinton and Francis Collins, then the director of the National Human Genome Research Institute, celebrated the near completion of the human genome sequence at the White House in the summer of 2000, it is unlikely that they or anyone else could have predicted the blossoming of meta-omics in the following two decades and their applications in modern human microbiome and environmental microbiome research. This transformation was enabled by the development of high-throughput sequencing technologies and sophisticated computational biology tools and bioinformatics software packages. Today, environmental meta-omics has undoubtedly revolutionized our understanding of ocean ecosystems, providing the genetic blueprint of oceanic microscopic organisms. In this review, I discuss the importance of functional genomics in future marine microbiome research and advocate a position for a gene-centric, bottom-up approach in modern oceanography. I propose that a synthesis of multidimensional approaches is required for a better understanding of the true functionality of the marine microbiome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1146/annurev-marine-020123-100931 | DOI Listing |
Fish Shellfish Immunol
January 2025
State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, P.R. China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China; Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, P.R. China. Electronic address:
The liver-expressed antimicrobial peptide 2 (LEAP2) is gaining recognition for its immune regulatory functions beyond direct antimicrobial activity. In this study, we investigated the role of mudskipper (Boleophthalmus pectinirostris) LEAP2 (BpLEAP2) in enhancing the survival, gut health, and immune resilience against Edwardsiella tarda infection. Pre-oral delivery of BpLEAP2 significantly improved survival rates and mitigated infection-induced damage to the gut, as evidenced by preserved villus length and goblet cell count.
View Article and Find Full Text PDFSci Adv
January 2025
Phycology Research Group, Department of Biology, Ghent University, Ghent, Belgium.
The green seaweed relies on associated bacteria for morphogenesis and is an important model to study algal-bacterial interactions. -associated bacteria exhibit high turnover across environmental gradients, leading to the hypothesis that bacteria contribute to the acclimation potential of the host. However, the functional variation of these bacteria in relation to environmental changes remains unclear.
View Article and Find Full Text PDFSci Adv
January 2025
Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
Certain coral individuals exhibit enhanced resistance to thermal bleaching, yet the specific microbial assemblages and their roles in these phenotypes remain unclear. We compared the microbial communities of thermal bleaching-resistant (TBR) and thermal bleaching-sensitive (TBS) corals using metabarcoding and metagenomics. Our multidomain approach revealed stable distinct microbial compositions between thermal phenotypes.
View Article and Find Full Text PDFBiol Rev Camb Philos Soc
January 2025
School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, Victoria, 3800, Australia.
Techniques for non-invasive sampling of ecophysiological data in wild animals have been developed in response to challenges associated with studying captive animals or using invasive methods. Of these, drones, also known as Unoccupied Aerial Vehicles (UAVs), and their associated sensors, have emerged as a promising tool in the ecophysiology toolkit. In this review, we synthesise research in a scoping review on the use of drones for studying wildlife ecophysiology using the PRISMA-SCr checklist and identify where efforts have been focused and where knowledge gaps remain.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Applied Phycology and Biotechnology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364001, India.
The present study explores the microbial community associated with the industrially important red seaweed Gracilaria dura to determine the diversity and biotechnological potential through culture and metagenomics approaches. In the first part of the investigation, we isolated and characterized 75 bacterial morphotypes, with varied colony characteristics and metabolic diversity from the wild seaweed. Phylogenetic analysis identified isolates in Proteobacteria, Firmicutes, and Actinobacteria, with Bacillus sp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!