Cobalt (Co)-based materials have been widely investigated as hopeful noble-metal-free alternatives for the oxygen evolution reaction (OER) in alkaline electrolytes, which is crucial for generating hydrogen by water electrolysis. Herein, cobalt-based telluride particles with good electronic conductivity as anodic electrocatalysts were prepared under vacuum by the solid-state strategy, which display remarkable activities toward the OER. Nickel (Ni) and iron (Fe) codoped cobalt telluride (NiFe-CoTe) exhibits an overpotential of 321 mV to achieve a current density of 10 mA cm and a Tafel slope of 51.8 mV dec, outperforming the performances of CoTe, CoTe, and IrO. According to the DFT calculation, the adsorbed hydroxyl-assisted adsorbate evolution mechanism was proposed for the OER process of NiFe-CoTe, which reveals the synergetic effect toward OER induced by codoping of the Ni and Fe atoms. This work proposes a rational strategy to prepare cobalt-based tellurides as efficient OER catalysts in alkaline electrolytes, providing a new strategy to prepare and regulate metal-based tellurides for catalysis and beyond.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.4c00921 | DOI Listing |
Small
January 2025
Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India.
Controlled and optimized heterogenic interfacial coupling is the key to enhance the electrochemical performance. Herein, for the first time, telluride-based CoS/CoTe heterostructure is reported as a bifunctional catalyst for energy-efficient H generation. Detailed investigations suggest that the heterogenic interfacial coupling leads to superior bifunctional electrochemical performance of the CoS/CoTe heterostructure.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2024
Computing Center of the Far Eastern Branch of the Russian Academy of Sciences, 680000 Khabarovsk, Russia.
Nano Lett
October 2024
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China.
Chiral inorganic materials possess unique asymmetric properties that could significantly impact various fields. However, their practical application has been hindered by challenges in creating structurally robust chiral materials. We report the synthesis of well-defined chiral-shaped hollow cobalt oxide nanostructures, extendable to a family of chalcogenides including sulfide, selenide, and telluride through topological transformations.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2024
Graduate School of Materials Science, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan.
Layered materials have emerged as stars in the realm of nanomaterials, showcasing exceptional versatility in various fields. This investigation employed a thermally driven method to intercalate cobalt (Co) into the van der Waals gaps of (CuI)BiTeSe crystals and investigated the mechanism by which the intercalated Co enhances the thermoelectric performance of the material. Co intercalation decreases the carrier concentration, thereby improving the Seebeck coefficient and decreasing both the mobility and the electrical conductivity.
View Article and Find Full Text PDFLangmuir
July 2024
School of Nanoscience and Technology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India.
Pesticides are crucial in modern agriculture because they reduce pests and boost yield, but they also represent major risks to human health and the environment; therefore, it is important to monitor their presence in food. Reliable and precise detection techniques are possible ways to address this issue. In this work, we utilize atomically thin (two-dimensional) cobalt telluride (CoTe) with a high surface area and charge as a template material to detect mancozeb using spectroscopic and electrochemical techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!