We experimentally investigate the performance of narrowband optoelectronic oscillator (OEO) reservoir computers using the standard 10th-order nonlinear autoregressive-moving-average (NARMA10) task. Because comparing results from differently parameterized photonic time-delay systems can be difficult, we introduce a new, to the best of our knowledge, metric that accounts for system size, computational accuracy, and training effort overhead in order to provide an "at-a-glance" method to holistically determine a reservoir computer's performance. We then demonstrate the first experimental effort of narrowband OEO-based reservoir computing for the RADIOML dataset, which consists of recognizing and classifying IQ-modulated radio signals including analog and digital modulations. Our results indicate that narrowband OEOs are capable of achieving reasonable accuracies with exceptionally small training sets, thereby paving the way to real-time machine learning for radio frequency signals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.523718 | DOI Listing |
Chemphyschem
January 2025
South China University of Technology School of Materials Science and Engineering, State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, 381 Wushan Road, 510640, Guangzhou, CHINA.
Multi-resonance thermally activated delayed fluorescence (MR-TADF) materials possess unique advantages of high-efficiency and narrowband emission, which have rapidly occupied an important position in the field of organic light-emitting diodes (OLEDs). In recent years, significant advancements have been made in the development of MR-TADF materials, particularly in achieving spectral narrowing for high-color-purity OLED applications. Based on diverse MR-TADF molecular skeletons, this review summarizes the primary molecular strategies to narrow spectrum by suppressing structural relaxation and intermolecular interactions.
View Article and Find Full Text PDFSci Adv
January 2025
Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan.
The pursuit of boron-based organic compounds with multiresonance (MR)-induced thermally activated delayed fluorescence (TADF) is propelled by their potential as narrowband blue emitters for wide-gamut displays. Although boron-doped polycyclic aromatic hydrocarbons in MR compounds share common structural features, their molecular design traditionally involves iterative approaches with repeated attempts until success. To address this, we implemented machine learning algorithms to establish quantitative structure-property relationship models, predicting key optoelectronic characteristics, such as full width at half maximum (FWHM) and main peak wavelength, for deep-blue MR candidates.
View Article and Find Full Text PDFSci Adv
January 2025
QTF Centre of Excellence, Department of Electronics and Nanoengineering, Aalto University, Espoo FI-00076 Aalto, Finland.
Reconstructive optoelectronic spectroscopy has generated substantial interest in the miniaturization of traditional spectroscopic tools, such as spectrometers. However, most state-of-the-art demonstrations face fundamental limits of rank deficiency in the photoresponse matrix. In this work, we demonstrate a miniaturized spectral sensing system using an electrically tunable compact optoelectronic interface, which generates distinguishable photoresponses from various input spectra, enabling accurate spectral identification with a device footprint of 5 micrometers by 5 micrometers.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of physical science and technology, ShanghaiTech University, Shanghai 201210, China.
Implanting heteroatoms into organic π-conjugated molecules (OCMS) offered a great opportunity to fine-tune the chemical structures and optoelectronic properties. This work describes a new family of 1,4-azaphosphinines with extended σ-π hyperconjugations. The photophysical studies revealed that azaphosphinines exhibited narrow-band thermally activated delayed fluorescence (TADF) ( full width at half-maximum: 26-40 nm).
View Article and Find Full Text PDFSmall
January 2025
Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China.
Narrowband photodetection with selective light detection in ultraviolet (UV) range is particularly pronounced in specialized such as targeted wavelength imaging and UV-phototherapy. In contrast to conventional strategies, ferroelectric materials with pronounced bulk photovoltaic effect (BPVE) provide a novel asymmetric carrier generation concept for achieving filterless spectrally selective photodetection. Herein, for the first time, the realization of self-powered filterless narrowband UV photodetection is demonstrated in bulk single crystals of a newly developed halide perovskite ferroelectric, 2FEAEAPbCl (2FEEPC), which exhibits a wide bandgap of 3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!