Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Beyond extreme ultraviolet (BEUV) lithography with a 6 × nm wavelength is regarded as a future technique to continue the pattern shirking in integrated circuit (IC) manufacturing. This work proposes an optimization method for the mask structure to improve the imaging quality of BEUV lithography. Firstly, the structure of mask multilayers is optimized to maximize its reflection coefficient. Then, a mask diffraction near-field (DNF) model is established based on the Born series algorithm, and the aerial image of BEUV lithography system can be further calculated. Additionally, the mask absorber structure is inversely designed using the particle swarm optimization (PSO) algorithm. Simulation results show a significant improvement of the BEUV lithography imaging obtained by the proposed optimization methods. The proposed workflow can also be expanded to areas of EUV and soft x ray imaging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.523596 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!