Beryllium chemistry is typically governed by its electron deficient character, but in some compounds it can act as a base. In order to understand better the unusual basicity of Be, we have systematically explored the complexes of one such compound, Be(CO), towards several hydrogen bond donors HX (X=F, Cl, Br, CN, NC, CCH, OH). For all complexes we find three different minima, two hydrogen bonded minima (to the Be or O atoms), and one weak beryllium bonded minimum. Further characterization of the interactions using a topological analysis of the electron density and Symmetry Adapted Perturbation Theory (SAPT) provide insight into the nature of these interactions. Overall these results highlight the capability of certain beryllium compounds to act as either a weak Lewis acid or, unconventionally, a Lewis base whose basicity towards hydrogen bonding is comparable to that of π systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphc.202400608 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!