Even with the powerful statistical parameters derived from the Extreme Gradient Boost (XGB) algorithm, it would be advantageous to define the predicted accuracy to the level of a specific case, particularly when the model output is used to guide clinical decision-making. The probability density function (PDF) of the derived intracranial pressure predictions enables the computation of a definite integral around a point estimate, representing the event's probability within a range of values. Seven hold-out test cases used for the external validation of an XGB model underwent retinal vascular pulse and intracranial pressure measurement using modified photoplethysmography and lumbar puncture, respectively. The definite integral ±1 cm water from the median (DIICP) demonstrated a negative and highly significant correlation (-0.5213±0.17, p< 0.004) with the absolute difference between the measured and predicted median intracranial pressure (DiffICPmd). The concordance between the arterial and venous probability density functions was estimated using the two-sample Kolmogorov-Smirnov statistic, extending the distribution agreement across all data points. This parameter showed a statistically significant and positive correlation (0.4942±0.18, p< 0.001) with DiffICPmd. Two cautionary subset cases (Case 8 and Case 9), where disagreement was observed between measured and predicted intracranial pressure, were compared to the seven hold-out test cases. Arterial predictions from both cautionary subset cases converged on a uniform distribution in contrast to all other cases where distributions converged on either log-normal or closely related skewed distributions (gamma, logistic, beta). The mean±standard error of the arterial DIICP from cases 8 and 9 (3.83±0.56%) was lower compared to that of the hold-out test cases (14.14±1.07%) the between group difference was statistically significant (p<0.03). Although the sample size in this analysis was limited, these results support a dual and complementary analysis approach from independently derived retinal arterial and venous non-invasive intracranial pressure predictions. Results suggest that plotting the PDF and calculating the lower order moments, arterial DIICP, and the two sample Kolmogorov-Smirnov statistic may provide individualized predictive accuracy parameters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11216561PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0306028PLOS

Publication Analysis

Top Keywords

intracranial pressure
20
probability density
12
hold-out test
12
test cases
12
derived intracranial
8
pressure predictions
8
definite integral
8
measured predicted
8
cautionary subset
8
subset cases
8

Similar Publications

Dementia Care Research and Psychosocial Factors.

Alzheimers Dement

December 2024

Seattle University, Seattle, WA, USA.

Background: Cerebral amyloid angiopathy (CAA) and hypertension are the two most common risk factors of intracranial hemorrhage leading to cognitive impairment, but less is known about how the two relate. A better understanding of the association between these risk factors is a key step towards developing new strategies to manage hypertension and attenuate CAA progression.

Method: This study analyzed data from 2,510 participants in the National Alzheimer's Coordinating Center (NACC) dataset who had CAA and longitudinal blood pressure (BP) measurements before death.

View Article and Find Full Text PDF

Background: Elevated intracranial pressure (ICP) is a potentially life-threatening condition requiring prompt intervention. While both mannitol and hypertonic saline (HTS) are commonly used hyperosmotic agents for treating elevated ICP, there is insufficient evidence comparing their renal safety profiles and overall effectiveness. This study protocol outlines a pragmatic randomized trial to compare protocol-based 11.

View Article and Find Full Text PDF

The effect of acetazolamide on regional brain tissue oxygenation in patients with acute brain injury (ABI) is unknown. We studied adult patients with ABI who received acetazolamide as per the treating physician's decision and had ICP and brain oxygen pressure (PbtO) monitoring. Baseline measurements of ICP, cerebral perfusion pressure (CPP), and PbtO were taken before administering acetazolamide; subsequent measurements were recorded every 5 min for a total of 20 min.

View Article and Find Full Text PDF

Dysfunctional lymphatic drainage from the central nervous system (CNS) has been linked to neuroinflammatory and neurodegenerative disorders, but our understanding of the lymphatic contribution to CNS fluid autoregulation remains limited. Here, we studied forces that drive the outflow of the cerebrospinal fluid (CSF) into the deep and superficial cervical lymph nodes (dcLN and scLN) and tested how the blockade of lymphatic networks affects CNS fluid homeostasis. Outflow to the dcLN occurred spontaneously in the absence of lymphatic pumping and was coupled to intracranial pressure (ICP), whereas scLN drainage was driven by pumping.

View Article and Find Full Text PDF

Background: Propofol is one of the most used intravenous anesthetic agents in traumatic brain injury (TBI) patients undergoing emergency neurosurgical procedures. Despite being efficacious, its administration is associated with dose-related adverse effects. The use of adjuvants along with propofol aids in limiting its consumption, thereby mitigating the side effects related to propofol usage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!