Metallo-supramolecular cages have garnered tremendous attention for their diverse yet molecular-level precision structures. However, the physical properties of these supramolecular ensembles, which are of potential significance in molecular electronics, remain largely unexplored. We herein constructed a series of octahedral metallo-cages and cage-fullerene complexes with notably enhanced structural stability. As such, we could systematically evaluate the electrical conductivity of these ensembles at both the single-molecule level and aggregated bulk state (as well-defined films). Our findings reveal that counteranions and fullerene guests play a pivotal role in determining the electrical conductivity of the aggregated state, while such effects are less significant for single-molecule conductance. Both the counteranions and fullerenes effectively tune the electronic structures and packing density of metallo-supramolecular assemblies, and facilitate efficient charge transfer between the cage hosts and fullerenes, resulting in a notable one order of magnitude increase in the electrical conductivity of the aggregated state.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202410710 | DOI Listing |
Curr Obes Rep
January 2025
Metabolism and Body Composition, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA.
Background: Recent technological advances have introduced novel methods for measuring body composition, each with unique benefits and limitations. The choice of method often depends on the trade-offs between accuracy, cost, participant burden, and the ability to measure specific body composition compartments.
Objective: To review the considerations of cost, accuracy, portability, and participant burden in reference and emerging body composition assessment methods, and to evaluate their clinical applicability.
ACS Appl Mater Interfaces
January 2025
Department of Energy Engineering, Hanyang University, Seoul 04763, Republic of Korea.
Lithium-tellurium (Li-Te) batteries are gaining attention as a promising next-generation energy storage system due to their superior electrical conductivity and high volumetric capacity compared to sulfur and selenium. Tellurium's unique properties, such as suitable redox potential, excellent conductivity, high volumetric capacity, and greatest stability, position it as a strong candidate for negative electrode materials. This study explores the potential of metal tellurides, specifically CuTe and FeTe monolayers, as effective tellurium host materials, leveraging their polar interactions with lithium polytellurides.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
For rechargeable zinc-iodine batteries, the low electrical conductivity of iodine and the easy dissolution of polyiodide in the electrolyte need to be carefully managed to ensure efficient operation. Herein, we introduce an organic iodized salt, formamidinium iodide (CHNI), to modulate the solvation structure of iodide ion, aimed to improve the reaction kinetics of iodine for reversible redox conversion. The participation of formamidinium ion (FA) into solvation structure leads to the formation of the favorable FAIZn(HO) complex, facilitating easier desolvation for redox conversion with iodine.
View Article and Find Full Text PDFSmall
January 2025
Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
A novel polymer electrolyte based on CsPbI quantum dots (QDs) reinforced polyacrylonitrile (PAN), named as PIL, is exploited to address the low room-temperature (RT) ion conductivity and poor interfacial compatibility of polymer solid-state electrolytes. After optimizing the content of CsPbI QDs, RT ion conductivity of PIL largely increased from 0.077 to 0.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
We propose a non-magnetic transparent heating film based on silver nanowires (Ag-NWs) for application in spin-exchange relaxation-free (SERF) magnetic field measurement devices. To achieve ultra-high sensitivity in atomic magnetometers, the atoms within the alkali metal vapor cell must be maintained in a stable and uniform high-temperature environment. Ag-NWs, as a transparent conductive material with exceptional electrical conductivity, are well suited for this application.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!