A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Prediction-Augmented Shared Decision-Making and Lung Cancer Screening Uptake. | LitMetric

AI Article Synopsis

  • - The study highlights the importance of improving low uptake of lung cancer screening through a decision-making tool aimed at high-risk individuals who could benefit the most from the screening.
  • - Conducted across six Veterans Affairs sites, the study involved nearly 10,000 eligible participants, focusing on those aged 55-80 with a significant history of smoking.
  • - Results showed that after the implementation of the decision support tool, there was a notable increase in overall lung cancer screening uptake, particularly among those predicted to have high benefits from the screening.

Article Abstract

Importance: Addressing poor uptake of low-dose computed tomography lung cancer screening (LCS) is critical, especially for those having the most to gain-high-benefit persons with high lung cancer risk and life expectancy more than 10 years.

Objective: To assess the association between LCS uptake and implementing a prediction-augmented shared decision-making (SDM) tool, which enables clinicians to identify persons predicted to be at high benefit and encourage LCS more strongly for these persons.

Design, Setting, And Participants: Quality improvement interrupted time series study at 6 Veterans Affairs sites that used a standard set of clinical reminders to prompt primary care clinicians and screening coordinators to engage in SDM for LCS-eligible persons. Participants were persons without a history of LCS who met LCS eligibility criteria at the time (aged 55-80 years, smoked ≥30 pack-years, and current smoking or quit <15 years ago) and were not documented to be an inappropriate candidate for LCS by a clinician during October 2017 through September 2019. Data were analyzed from September to November 2023.

Exposure: Decision support tool augmented by a prediction model that helps clinicians personalize SDM for LCS, tailoring the strength of screening encouragement according to predicted benefit.

Main Outcome And Measure: LCS uptake.

Results: In a cohort of 9904 individuals, the median (IQR) age was 64 (57-69) years; 9277 (94%) were male, 1537 (16%) were Black, 8159 (82%) were White, 5153 (52%) were predicted to be at intermediate (preference-sensitive) benefit and 4751 (48%) at high benefit, and 1084 (11%) received screening during the study period. Following implementation of the tool, higher rates of LCS uptake were observed overall along with an increase in benefit-based LCS uptake (higher screening uptake among persons anticipated to be at high benefit compared with those at intermediate benefit; primary analysis). Mean (SD) predicted probability of getting screened for a high-benefit person was 24.8% (15.5%) vs 15.8% (11.8%) for a person at intermediate benefit (mean absolute difference 9.0 percentage points; 95% CI, 1.6%-16.5%).

Conclusions And Relevance: Implementing a robust approach to personalized LCS, which integrates SDM, and a decision support tool augmented by a prediction model, are associated with improved uptake of LCS and may be particularly important for those most likely to benefit. These findings are timely given the ongoing poor rates of LCS uptake.

Download full-text PDF

Source
http://dx.doi.org/10.1001/jamanetworkopen.2024.19624DOI Listing

Publication Analysis

Top Keywords

lung cancer
12
prediction-augmented shared
8
shared decision-making
8
cancer screening
8
lcs
5
decision-making lung
4
screening uptake
4
uptake addressing
4
addressing poor
4
poor uptake
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!