Factor IX is the precursor of a serine protease that functions in the intrinsic blood clotting pathway. Deficiencies in this plasma glycoprotein result in haemophilia B (or Christmas disease) and occur in about 1 in 30,000 males. Patients are currently treated with fresh frozen plasma or prothrombin complex concentrates prepared from pooled plasma from normal individuals. There are several problems with this method of treatment, including the probable exposure of the patients to contaminants such as the viral agents responsible for hepatitis and AIDS (acquired immune deficiency syndrome). As a first step towards an alternative source of pure human factor IX, we report here on the use of recombinant DNA techniques to produce biologically active factor IX in cultured mammalian cells. Stable cell lines were produced by cotransfecting a baby hamster kidney (BHK) cell line with a plasmid containing a gene for factor IX and a plasmid containing a selectable marker. Protein secreted by these cell lines reduces the clotting time of plasma from factor IX-deficient patients. We present additional evidence that this protein is authentic human factor IX.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/316271a0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!