Impaired numerosity perception in developmental dyscalculia (low "number acuity") has been interpreted as evidence of reduced representational precision in the neurocognitive system supporting non-symbolic number sense. However, recent studies suggest that poor numerosity judgments might stem from stronger interference from non-numerical visual information, in line with alternative accounts that highlight impairments in executive functions and visuospatial abilities in the etiology of dyscalculia. To resolve this debate, we used a psychophysical method designed to disentangle the contribution of numerical and non-numerical features to explicit numerosity judgments in a dot comparison task and we assessed the relative saliency of numerosity in a spontaneous categorization task. Children with dyscalculia were compared to control children with average mathematical skills matched for age, IQ, and visuospatial memory. In the comparison task, the lower accuracy of dyscalculics compared to controls was linked to weaker encoding of numerosity, but not to the strength of non-numerical biases. Similarly, in the spontaneous categorization task, children with dyscalculia showed a weaker number-based categorization compared to the control group, with no evidence of a stronger influence of non-numerical information on category choice. Simulations with a neurocomputational model of numerosity perception showed that the reduction of representational resources affected the progressive refinement of number acuity, with little effect on non-numerical bias in numerosity judgments. Together, these results suggest that impaired numerosity perception in dyscalculia cannot be explained by increased interference from non-numerical visual cues, thereby supporting the hypothesis of a core number sense deficit. RESEARCH HIGHLIGHTS: A strongly debated issue is whether impaired numerosity perception in dyscalculia stems from a deficit in number sense or from poor executive and visuospatial functions. Dyscalculic children show reduced precision in visual numerosity judgments and weaker number-based spontaneous categorization, but no increasing reliance on continuous visual properties. Simulations with deep neural networks demonstrate that reduced neural/computational resources affect the developmental trajectory of number acuity and account for impaired numerosity judgments. Our findings show that weaker number acuity in developmental dyscalculia is not necessarily related to increased interference from non-numerical visual cues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/desc.13538 | DOI Listing |
J Neurosci Res
November 2024
Department of Psychology, University of Tuebingen, Tuebingen, Germany.
Neurodegenerative diseases such as Parkinson's disease (PD) have a huge impact on patients, caregivers, and the health care system. Until now, diagnosis of mild cognitive impairments in PD has been established based on domain-general functions such as executive functions, attention, or working memory. However, specific numerical deficits observed in clinical practice have not yet been systematically investigated.
View Article and Find Full Text PDFJ Clin Med
September 2024
IRCCS Fondazione Santa Lucia, 00179 Rome, Italy.
Technology-based approaches for upper limb (UL) motor rehabilitation after stroke are mostly designed for severely affected patients to increase their recovery chances. However, the available randomized controlled trials (RCTs) focused on the efficacy of technology-based interventions often include patients with a wide range of motor impairment. This scoping review aims at overviewing the actual severity of stroke patients enrolled in RCTs that claim to specifically address UL severe motor impairment.
View Article and Find Full Text PDFDev Sci
November 2024
Department of General Psychology, University of Padova, Padova, Italy.
Impaired numerosity perception in developmental dyscalculia (low "number acuity") has been interpreted as evidence of reduced representational precision in the neurocognitive system supporting non-symbolic number sense. However, recent studies suggest that poor numerosity judgments might stem from stronger interference from non-numerical visual information, in line with alternative accounts that highlight impairments in executive functions and visuospatial abilities in the etiology of dyscalculia. To resolve this debate, we used a psychophysical method designed to disentangle the contribution of numerical and non-numerical features to explicit numerosity judgments in a dot comparison task and we assessed the relative saliency of numerosity in a spontaneous categorization task.
View Article and Find Full Text PDFEur J Ageing
April 2024
Department of General Psychology, University of Padova, Via Venezia, 8, 35131, Padua, Italy.
People constantly process temporal, numerical, and length information in everyday activities and interactions with the environment. However, it is unclear whether quantity perception changes during ageing. Previous studies have provided heterogeneous results, sometimes showing an age-related effect on a particular quantity, and other times reporting no differences between young and elderly samples.
View Article and Find Full Text PDFPsych J
October 2024
Institute of Neuroscience, National Research Council, Pisa, Italy.
Subitizing is the ability to appraise a number of small quantities (up to four) rapidly and precisely. This system, however, can be impaired by distractors presented along with targets to be enumerated. To better understand whether this limitation arises in perceptual circuits or in the response selection stage, we investigated whether subitizing can endure in simultaneous comparison tasks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!