We have designed an oven for optical reflection measurements at temperatures as high as 1000 K. The compact setup can be attached to any Fourier-transform infrared spectrometer using a microscope. The details of the layout, operation, and performance are discussed as well as ways for reference measurements and data correction. Finally, the high-temperature setup is utilized to determine the infrared reflectivity of tungsten up to T = 1000 K, which can serve as a reference mirror for future experiments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0214629 | DOI Listing |
Natl Sci Rev
January 2025
Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China.
The noise equivalent temperature difference (NETD) indicates the minimum temperature difference resolvable by using an infrared detector. The lower the NETD, the better the sensor can register small temperature differences. In this work, we proposed a strategy to achieve a high temperature resolution using a superconducting nanowire single-photon detector (SNSPD) with ultra-high sensitivity.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemistry, Yeungnam University, 280 Daehak-ro, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea.
Recent studies have reported that the cause and progression of many diseases are closely related to complex and diverse gene regulation involving multiple microRNAs (miRNAs). However, most existing methods for miRNA detection typically deal with one sample at a time, which limits the achievement of high diagnostic accuracy for diseases associated with multiple gene dysregulations. Herein, we develop a liquid flow-based microfluidic optical assay for the simple and reliable detection of two different target miRNAs simultaneously at room temperature without any enzymatic reactions.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Green Technology Group, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
Plastic waste (PW) presents a significant environmental challenge due to its persistent accumulation and harmful effects on ecosystems. According to the United Nations Environment Program (UNEP), global plastic production in 2024 is estimated to reach approximately 500 million tons. Without effective intervention, most of this plastic is expected to become waste, potentially resulting in billions of tons of accumulated PW by 2060.
View Article and Find Full Text PDFNanoscale
January 2025
Technical University of Darmstadt, Eduard-Zintl-Institute, Peter-Grünberg-Straße 8, 64287 Darmstadt, Germany.
The magnetic behavior of endohedrally transition-metal-doped tetrel clusters SnTM (TM = Cr, Mn, Fe) was investigated using a combined experimental and theoretical approach. Based on an improved experimental setup, the magnetic deflection was measured over a wide temperature range of = 16-240 K. From a Curie analysis of the experimentally observed single-sided shift at high nozzle temperatures, the spin multiplicities and -factors were determined.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Faculty of Materials Science and Engineering, "Gheorghe Asachi" Technical University of Iași, Blvd. Dimitrie Mangeron 71A, 700050 Iasi, Romania.
The paper starts by describing the manufacturing process of cups thermoformed from extruded foils of 80% recycled PET (80r-PET), which comprises heating, hot deep drawing and cooling. The 80r-PET foils were heated up to 120 °C, at heating rates of the order of hundreds °C/min, and deep drawn with multiple punchers, having a depth-to-width ratio exceeding 1:1. After puncher-assisted deformation, the cups were air blown away from the punchers, thus being "frozen" in the deformed state.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!