Viral infections can cause Endoplasmic Reticulum (ER) stress due to abnormal protein accumulation, leading to Unfolded Protein Response (UPR). Viruses have developed strategies to manipulate the host UPR, but there is a lack of detailed understanding of UPR modulation and its functional significance during HIV-1 infection in the literature. In this context, the current article describes the protocols used in our laboratory to measure ER stress levels and UPR during HIV-1 infection in T-cells and the effect of UPR on viral replication and infectivity. Thioflavin T (ThT) staining is a relatively new method used to detect ER stress in the cells by detecting protein aggregates. Here, we have illustrated the protocol for ThT staining in HIV-1 infected cells to detect and quantify ER stress. Moreover, ER stress was also detected indirectly by measuring the levels of UPR markers such as BiP, phosphorylated IRE1, PERK, and eIF2α, splicing of XBP1, cleavage of ATF6, ATF4, CHOP, and GADD34 in HIV-1 infected cells, using conventional immunoblotting and quantitative reverse transcription polymerase chain reaction (RT-PCR). We have found that the ThT-fluorescence correlates with the indicators of UPR activation. This article also demonstrates the protocols to analyze the impact of ER stress and UPR modulation on HIV-1 replication by knockdown experiments as well as the use of pharmacological molecules. The effect of UPR on HIV-1 gene expression/replication and virus production was analyzed by Luciferase reporter assays and p24 antigen capture ELISA, respectively, whereas the effect on virion infectivity was analyzed by staining of infected reporter cells. Collectively, this set of methods provides a comprehensive understanding of the Unfolded Protein Response pathways during HIV-1 infection, revealing its intricate dynamics.

Download full-text PDF

Source
http://dx.doi.org/10.3791/66522DOI Listing

Publication Analysis

Top Keywords

unfolded protein
12
protein response
12
hiv-1 infected
12
hiv-1 infection
12
hiv-1
9
upr
9
endoplasmic reticulum
8
reticulum stress
8
hiv-1 replication
8
upr modulation
8

Similar Publications

Hypoxia is a common feature of solid tumors that has previously been linked to resistance to radiotherapy and chemotherapy, and more recently to immunotherapy. In particular, hypoxic tumors exclude T cells and inhibit their activity, suggesting that tumor cells acquire a mechanism to evade T-cell recognition and killing. Our analysis of hypoxic tumors indicates that hypoxia downregulates the expression of MHC class I and its bound peptides (i.

View Article and Find Full Text PDF

With the increasing incidence of non-hereditary Parkinson's disease (PD), research into the involvement of specific environmental factors, in addition to aging, has become more prominent. The effects of microplastic exposure on public health have gained increased attention as it is known to cause a range of neurotoxic changes, some of which are similar to the pathological features of PD. We carried out low-dose microplastic exposure experiments on mice and Caenorhabditis elegans models and implemented a survey regarding the utilization of plastic products in the population.

View Article and Find Full Text PDF

A Coarse-Grained Simulation Approach for Protein Molecular Conformation Dynamics.

J Phys Chem A

January 2025

Computer Modelling Group, 3710 33 St NW, Calgary, Alberta T2L 2M1, Canada.

Coarse-grained molecular dynamics simulation is widely accepted for assessment of a large complex biological system, but it may also lead to a misleading conclusion. The challenge is to simulate protein structural dynamics (such as folding-unfolding behavior) due to the lack of a necessary backbone flexibility. This study developed a standard coarse-grained model directly from the protein atomic structure and amino acid coarse-grained FF (such as MARTINI FF v2.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Pacific Brain Health Center, Pacific Neuroscience Institute Foundation, Santa Monica, CA, USA.

Background: Brain accumulation of amyloid-ß (Aß) in plaques and neurons is the cause of AD neuropathology that is opposed by autologous monocyte/macrophages (MMs) in health but this defense fails in AD.

Method: RNAseq, immunochemistry of the brain, immunofluorescence, and confocal microscopy of macrophages.

Result: In the AD brain, MMs shuttle Aß from parenchyma to vessels, which develop vasculitis, causing amyloid-related imaging abnormalities (ARIAs).

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio De Janeiro, Rio de Janeiro, Brazil.

Background: Alzheimer's disease (AD) is the leading cause of dementia in elderly humans worldwide. More than 40 million people currently suffer from AD, and this prevalence tends to increase considerably in the coming decades due to increased longevity. The unfolded protein response (UPR) is an adaptive signaling mechanism that aims to maintain cell viability under misfolded protein accumulation and endoplasmic reticulum stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!