A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Tweezer Dyads for H-Bond Assisted Cooperativity in Tandem Uncaging Systems. | LitMetric

"Tandem" uncaging systems, in which a photolabile protecting group (PPG) is sensitized by an energy-harvesting antenna, may increase the photosensitivity of PPGs by several orders of magnitude for two-photon (2P) photorelease. Yet, they remain poorly accessible because of arduous multi-step synthesis. In this work, we design efficient tandem uncaging systems by (i) using a convenient assembly of the building blocks relying on click chemistry, (ii) introducing H-bonding induced proximity thus facilitating (iii) photoinduced electron transfer (PeT) as a cooperative mechanism. A strong two-photon absorber electron-donating quadrupolar antenna and various electron-accepting PPGs (mDEAC, MNI or MDNI) were clicked stepwise onto a "tweezer-shaped" pyrido-2,6-dicarboxylate platform whose H-bonding and π-stacking abilities were exploited to keep the antenna and the PPGs in close proximity. The different electron-accepting ability of the PPGs led to dyads with wildly different behaviors. Whilst the MDNI and MNI dyads showed poor dark stability or no photo-uncaging ability due to their too high electron-accepting character, the mDEAC dyad benefited from optimum redox potentials to promote PeT and slow down charge recombination, resulting in enhanced uncaging quantum yield (Φ=0.38) compared to mDEAC (Φ=0.014). This unique combination resulted in large 2P photo-sensitivity in the near-infrared window (240 GM at 710 nm).

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202402076DOI Listing

Publication Analysis

Top Keywords

uncaging systems
12
tandem uncaging
8
tweezer dyads
4
dyads h-bond
4
h-bond assisted
4
assisted cooperativity
4
cooperativity tandem
4
uncaging
4
systems "tandem"
4
"tandem" uncaging
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!