Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Intracellular reactive oxygen species (ROS) in steatotic cells pose a problem due to their potential to cause oxidative stress and cellular damage. Delivering engineered phospholipids to intracellular lipid droplets in steatotic hepatic cells, using the cell's inherent intracellular lipid transport mechanisms are investigated. Initially, it is shown that tail-labeled fluorescent lipids assembled into liposomes are able to be transported to intracellular lipid droplets in steatotic HepG2 cells and HHL-5 cells. Further, an antioxidant, an EUK salen-manganese derivative, which has superoxide dismutase-like and catalase-like activity, is covalently conjugated to the tail of a phospholipid and formulated as liposomes for administration. Steatotic HepG2 cells and HHL-5 cells incubated with these antioxidant liposomes have lower intracellular ROS levels compared to untreated controls and non-covalently formulated antioxidants. This first proof-of-concept study illustrates an alternative strategy to equip native organelles in mammalian cells with engineered enzyme activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202400816 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!