Atherosclerosis (AS) is a significant global health concern due to its high morbidity and mortality rates. Extensive efforts have been made to replicate the cardiovascular system and explore the pathogenesis, diagnosis, and treatment of AS. Microfluidics has emerged as a valuable technology for modeling the cardiovascular system and studying AS. Here a brief review of the advances of microfluidic-based cardiovascular systems for AS research is presented. The critical pathogenetic mechanisms of AS investigated by microfluidic-based cardiovascular systems are categorized and reviewed, with a detailed summary of accurate diagnostic methods for detecting biomarkers using microfluidics represented. Furthermore, the review covers the evaluation and screening of AS drugs assisted by microfluidic systems, along with the fabrication of novel drug delivery carriers. Finally, the challenges and future prospects for advancing microfluidic-based cardiovascular systems in AS research are discussed and proposed, particularly regarding new opportunities in multi-disciplinary fundamental research and therapeutic applications for a broader range of disease treatments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4tb00756e | DOI Listing |
Lab Chip
September 2024
Department of Chemical Engineering, Hongik University, Seoul, 04066, Republic of Korea.
The gut communicates with the brain in a variety of ways known as the gut-brain axis (GBA), which is known to affect neurophysiological functions as well as neuronal disorders. Exosomes capable of passing through the blood-brain-barrier (BBB) have received attention as a mediator of gut-brain signaling and drug delivery vehicles. In conventional well plate-based experiments, it is difficult to observe the exosome movement in real time.
View Article and Find Full Text PDFAdv Sci (Weinh)
October 2024
Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077, China.
Interactions between tumoral cells and tumor-associated bacteria within the tumor microenvironment play a significant role in tumor survival and progression, potentially impacting cancer treatment outcomes. In lung cancer patients, the Gram-negative pathogen Pseudomonas aeruginosa raises questions about its role in tumor survival. Here, a microfluidic-based 3D-human lung tumor spheroid-P.
View Article and Find Full Text PDFBackground: The microfluidic-based Glomerulus-on-Chips (GoC) are mostly cell based, that is, 3D cell culture techniques are used to culture glomerular cells in order to mimic glomerular ultrafiltration. These chips require high maintenance to keep cell viability intact. There have been some approaches to build non-cell-based GoCs but many of these approaches have the drawback of membrane fouling.
View Article and Find Full Text PDFSmall
November 2024
Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Life Sciences, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China.
Accurate assessment of phenotypic and genotypic characteristics of bacteria can facilitate comprehensive cataloguing of all the resistance factors for better understanding of antibiotic resistance. However, current methods primarily focus on individual phenotypic or genotypic profiles across different colonies. Here, a Digital microfluidic-based automated assay for whole-genome sequencing of single-antibiotic-resistant bacteria is reported, enabling Genotypic and Phenotypic Analysis of antibiotic-resistant strains (Digital-GPA).
View Article and Find Full Text PDFJ Mater Chem B
July 2024
School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266113, China.
Atherosclerosis (AS) is a significant global health concern due to its high morbidity and mortality rates. Extensive efforts have been made to replicate the cardiovascular system and explore the pathogenesis, diagnosis, and treatment of AS. Microfluidics has emerged as a valuable technology for modeling the cardiovascular system and studying AS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!