AI Article Synopsis

  • Faithful cell division depends on the correct attachment of kinetochores to microtubules that pull chromosomes apart, and errors can occur during mitosis.
  • Proteins like AURORA B and AURORA A help to destabilize incorrect attachments, while MPS1 also plays a role in weakening the connections between kinetochores and microtubules, ensuring proper alignment.
  • The study reveals that MPS1 activates AURORA A kinase (AAK) at centrosomes to facilitate error correction, demonstrating a communication pathway that helps maintain chromosome integrity during cell division.

Article Abstract

Faithfull cell division relies on mitotic chromosomes becoming bioriented with each pair of sister kinetochores bound to microtubules oriented toward opposing spindle poles. Erroneous kinetochore-microtubule attachments often form during early mitosis, but are destabilized through the phosphorylation of outer kinetochore proteins by centromeric AURORA B kinase (ABK) and centrosomal AURORA A kinase (AAK), thus allowing for re-establishment of attachments until biorientation is achieved. MPS1-mediated phosphorylation of NDC80 has also been shown to directly weaken the kinetochore-microtubule interface in yeast. In human cells, MPS1 has been proposed to transiently accumulate at end-on attached kinetochores and phosphorylate SKA3 to promote microtubule release. Whether MPS1 directly targets NDC80 and/or promotes the activity of AURORA kinases in metazoans remains unclear. Here, we report a novel mechanism involving communication between kinetochores and centrosomes, wherein MPS1 acts upstream of AAK to promote error correction. MPS1 on pole-proximal kinetochores phosphorylates the C-lobe of AAK thereby increasing its activation at centrosomes. This proximity-based activation ensures the establishment of a robust AAK activity gradient that locally destabilizes mal-oriented kinetochores near spindle poles. Accordingly, MPS1 depletion from cells causes severe chromosome misalignment and erroneous kinetochore-microtubule attachments, which can be rescued by tethering either MPS1 or constitutively active AAK mutants to centrosomes. Proximity-based activation of AAK by MPS1 also occurs in human cells to promote AAK-mediated phosphorylation of the NDC80 N-terminal tail. These findings uncover an MPS1-AAK cross-talk that is required for efficient error correction, showcasing the ability of kinetochores to modulate centrosome outputs to ensure proper chromosome segregation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11213139PMC
http://dx.doi.org/10.1101/2024.06.11.598300DOI Listing

Publication Analysis

Top Keywords

proximity-based activation
12
error correction
12
mps1
8
spindle poles
8
erroneous kinetochore-microtubule
8
kinetochore-microtubule attachments
8
aurora kinase
8
phosphorylation ndc80
8
human cells
8
centrosomes proximity-based
8

Similar Publications

Development of a Class A/B Hybrid GPCR System for the Proximity-Assisted Screening of GPCR Ligands.

ACS Chem Biol

December 2024

Department Chemistry and Biochemistry Clemens-Schöpf-Institute, Technical University Darmstadt, Peter-Grünberg Straße 4, Darmstadt 64287, Germany.

Class A G protein-coupled receptors (GPCRs) are key mediators in numerous signaling pathways and important drug targets for several diseases. A major shortcoming in GPCR ligand screening is the detection limit for weak binding molecules, which is especially critical for poorly druggable GPCRs. Here, we present a proximity-based screening system for class A GPCRs, which adopts the natural two-step activation mechanism of class B GPCRs.

View Article and Find Full Text PDF

As epigenetic therapies continue to gain ground as potential treatment strategies for cancer and other diseases, compounds that target histone lysine methylation and the enzyme complexes represent a major frontier for therapeutic development. Clinically viable therapies targeting the activities of histone lysine methyltransferases (HKMT) and demethylases (HKDMs) have only recently begun to emerge following FDA approval of the EZH2 inhibitor tazemetostat in 2020 and remain limited to compounds targeting the well-studied SET domain-containing HKMTs and their opposing HKDMs. These include the H3K27 methyltransferases EZH2/EZH1, the singular H3K79 methyltransferase DOT1L, and the H3K4 methyltransferase MLL1/COMPASS as well as H3K9 and H3K36 methyltransferases.

View Article and Find Full Text PDF

The soybean cyst nematode (SCN; ) facilitates infection by secreting a repertoire of effector proteins into host cells to establish a permanent feeding site composed of a syncytium of root cells. Among the diverse proteins secreted by the nematode, we were specifically interested in identifying proteases to pursue our goal of engineering decoy substrates that elicit an immune response when cleaved by an SCN protease. We identified a cysteine protease that we named Cysteine Protease 1 (CPR1), which was predicted to be a secreted effector based on transcriptomic data obtained from SCN esophageal gland cells, the presence of a signal peptide, and the lack of transmembrane domains.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores the genetic factors behind autism spectrum disorder by focusing on specific risk genes and their interactions within protein complexes in the mouse brain.
  • Researchers developed a method to examine the spatial proteomes of these genes, identifying interactions that connect high-risk genes with less-known ones, which may help in prioritizing genetic risks.
  • By using spatial proteomics and CRISPR technology, the study demonstrates functional interactions that regulate gene expression, shedding light on cellular mechanisms involved in autism and offering new pathways for research and potential treatments.
View Article and Find Full Text PDF

PROTACs, proteolysis targeting chimeras, are bifunctional molecules inducing protein degradation through a unique proximity-based mode of action. While offering several advantages unachievable by classical drugs, PROTACs have unfavorable physicochemical properties that pose challenges in application and formulation. In this study, we show the solubility enhancement of two PROTACs, ARV-110 and SelDeg51, using Poly(vinyl alcohol).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!