Ionizable lipid nanoparticles (LNPs) have been pivotal in combating COVID-19, and numerous preclinical and clinical studies have highlighted their potential in nucleic acid-based therapies and vaccines. However, the effectiveness of endosomal escape for the nucleic acid cargos encapsulated in LNPs is still low, leading to suboptimal treatment outcomes and side effects. Hence, improving endosomal escape is crucial for enhancing the efficacy of nucleic acid delivery using LNPs. Here, a mechanical oscillation (frequency: 65 Hz) is utilized to prompt the LNP-mediated endosomal escape. The results reveal this mechanical oscillation can induce the combination and fusion between LNPs with opposite surface charges, enhance endosomal escape of mRNA, and increase the transfection efficiency of mRNA. Additionally, cell viability remains high at 99.3% after treatment with oscillation, which is comparable to that of untreated cells. Furthermore, there is no obvious damage to mitochondrial membrane potential and Golgi apparatus integrity. Thus, this work presents a user-friendly and safe approach to enhancing endosomal escape of mRNA and boosting gene expression. As a result, our work can be potentially utilized in both research and clinical fields to facilitate LNP-based delivery by enabling more effective release of LNP-encapsulated cargos from endosomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11212954 | PMC |
http://dx.doi.org/10.1101/2024.06.19.599708 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!