DNA replication initiation timing is important for maintaining genome integrity.

bioRxiv

Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109.

Published: June 2024

DNA replication is regulated by factors that promote or inhibit initiation. In YabA is a negative regulator of DNA replication initiation while the newly identified kinase CcrZ is a positive regulator. The consequences of under-initiation or over-initiation of DNA replication to genome stability remain unclear. In this work, we measure origin to terminus ratios as a proxy for replication initiation activity. We show that Δ and several alleles under-initiate DNA replication while ablation of or overproduction of CcrZ leads to over-initiation. We find that cells under-initiating DNA replication have few incidents of replication fork stress as determined by low formation of RecA-GFP foci compared with wild type. In contrast, cells over-initiating DNA replication show levels of RecA-GFP foci formation analogous to cells directly challenged with DNA damaging agents. We show that cells under-initiating and over-initiating DNA replication were both sensitive to mitomycin C and that changes in replication initiation frequency cause increased sensitivity to genotoxic stress. With these results, we propose that cells under-initiating DNA replication are sensitive to DNA damage due to a shortage of DNA for repair through homologous recombination. For cells over-initiating DNA replication, we propose that an increase in the number of replication forks leads to replication fork stress which is further exacerbated by chromosomal DNA damage. Together, our study shows that DNA replication initiation frequency must be tightly controlled as changes in initiation influence replication fork fate and the capacity of cells to efficiently repair damage to their genetic material.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11212987PMC
http://dx.doi.org/10.1101/2024.06.18.599555DOI Listing

Publication Analysis

Top Keywords

dna replication
44
replication initiation
20
replication
16
dna
15
cells under-initiating
12
replication fork
12
over-initiating dna
12
under-initiating dna
8
fork stress
8
reca-gfp foci
8

Similar Publications

As nucleus-forming phages become better characterized, understanding their unifying similarities and unique differences will help us understand how they occupy varied niches and infect diverse hosts. All identified nucleus-forming phages fall within the Chimalliviridae family and share a core genome of 68 unique genes including chimallin, the major nuclear shell protein. A well-studied but non-essential protein encoded by many nucleus-forming phages is PhuZ, a tubulin homolog which aids in capsid migration, nucleus rotation, and nucleus positioning.

View Article and Find Full Text PDF

Coupling interactions between the alpha (α) subunit of the polymerase III core (α-Pol III core) and the tau (τ) subunit of the clamp loader complex (τ-CLC) are vital for efficient and rapid DNA replication in Escherichia coli (E. coli). Specific and targeted mutations in the C-terminal τ-interaction region of the Pol III α-subunit disrupted efficient coupled rolling circle DNA synthesis in vitro and caused significant genomic defects in CRISPR-Cas9 dnaE edited cell strains.

View Article and Find Full Text PDF

Anatomical, subset, and HIV-dependent expression of viral sensors and restriction factors.

Cell Rep

January 2025

Gladstone Institutes, San Francisco, CA, USA; Department of Urology, UCSF, San Francisco, CA, USA. Electronic address:

We developed viral sensor and restriction factor-cytometry by time of flight (VISOR-CyTOF), which profiles 19 viral sensors and restriction factors (VISORs) simultaneously in single cells, and applied it to 41 postmortem tissues from people with HIV. Mucosal myeloid cells are well equipped with SAMHD1 and sensors of viral capsid and DNA while CD4 T cells are not. In lymph node CD4 Tfh, VISOR expression patterns reflect those favoring integration but blocking HIV gene expression, thus favoring viral latency.

View Article and Find Full Text PDF

Extensive homologous recombination safeguards oocyte genome integrity in mammals.

Nucleic Acids Res

January 2025

MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, No.866 Yuhangtang Road, 310058, Hangzhou, China.

Meiosis in mammalian oocytes is interrupted by a prolonged arrest at the germinal vesicle stage, during which oocytes have to repair DNA lesions to ensure genome integrity or otherwise undergo apoptosis. The FIRRM/FLIP-FIGNL1 complex dissociates RAD51 from the joint DNA molecules in both homologous recombination (HR) and DNA replication. However, as a type of non-meiotic, non-replicative cells, whether this RAD51-dismantling mechanism regulates genome integrity in oocytes remains elusive.

View Article and Find Full Text PDF

Oscillation of the active form of the initiator protein DnaA (ATP-DnaA) allows for the timely regulation for chromosome replication. After initiation, DnaA-bound ATP is hydrolyzed, producing inactive ADP-DnaA. For the next round of initiation, ADP-DnaA interacts with the chromosomal locus DARS2 bearing binding sites for DnaA, a DNA-bending protein IHF, and a transcription activator Fis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!