Decreased excitability of pyramidal tract neurons in layer 5B (PT5B) of primary motor cortex (M1) has recently been shown in a dopamine-depleted mouse model of parkinsonism. We hypothesized that decreased PT5B neuron excitability would substantially disrupt oscillatory and non-oscillatory firing patterns of neurons in layer 5 (L5) of primary motor cortex (M1). To test this hypothesis, we performed computer simulations using a previously validated computer model of mouse M1. Inclusion of the experimentally identified parkinsonism-associated decrease of PT5B excitability into our computational model produced a paradoxical increase in rest-state PT5B firing rate, as well as an increase in beta-band oscillatory power in local field potential (LFP). In the movement-state, PT5B population firing and LFP showed reduced beta and increased high-beta, low-gamma activity of 20-35 Hz in the parkinsonian, but not in control condition. The appearance of beta-band oscillations in parkinsonism would be expected to disrupt normal M1 motor output and contribute to motor activity deficits seen in patients with Parkinson's disease (PD).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11212883PMC
http://dx.doi.org/10.1101/2024.05.23.595566DOI Listing

Publication Analysis

Top Keywords

motor cortex
16
primary motor
12
excitability pyramidal
8
pyramidal tract
8
tract neurons
8
neurons layer
8
motor
6
pt5b
5
decreased cellular
4
excitability
4

Similar Publications

Lateral peri-hand bias affects the horizontal but not the vertical distribution of attention.

Cortex

December 2024

Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, Ontario, Canada.

It has been demonstrated that humans exhibit an attention bias towards the lower visual field (e.g., faster target detection for targets appearing below eye level).

View Article and Find Full Text PDF

One of the key hallmarks of Parkinson's disease is the disruption of lipid homeostasis in the brain, which plays a critical role in neuronal membrane integrity and function. Understanding how treadmill training impacts lipid restructuring and its subsequent influence on motor function could provide a basis for developing targeted non-pharmacological interventions for individuals living with early stage of PD. This study aims to investigate the effects of a treadmill training intervention on motor deficits induced by 6-OHDA in rats model of PD.

View Article and Find Full Text PDF

We analysed here the dynamic of the kinesin-like Pavarotti (Pav) during male gametogenesis of wild-type and Sas4 mutant flies. Pav localizes to the equatorial region and the inner central spindle of late anaphase wild-type spermatogonia and displays a strong concentration at the midbody during late telophase. At metaphase of the first meiotic division, Pav shows widespread localization on the equatorial region of the spermatocytes.

View Article and Find Full Text PDF

Corticospinal motor neurons (CSMN), located in the motor cortex of the brain, are one of the key components of the motor neuron circuitry. They are in part responsible for the initiation and modulation of voluntary movement, and their degeneration is the hallmark for numerous diseases, such as amyotrophic lateral sclerosis (ALS), hereditary spastic paraplegia, and primary lateral sclerosis. Cortical hyperexcitation followed by in-excitability suggests the early involvement of cortical dysfunction in ALS pathology.

View Article and Find Full Text PDF

Introduction: Spasticity is a common complication of stroke, which is related to poor motor recovery and limitations in the performance of activities. Both transcranial magnetic stimulation (TMS) and extracorporeal shockwave therapy (ESWT) are effective treatment methods for poststroke spasticity (PSS). However, there is no existing study exploring the safety and effectiveness of TMS combined with ESWT for PSS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!