Liprin-α1 is a widely expressed scaffolding protein responsible for regulating cellular processes such as focal adhesion, cell motility, and synaptic transmission. Liprin-α1 interacts with many proteins including ELKS, GIT1, liprin-β, and LAR-family receptor tyrosine protein phosphatase. Through these protein-protein interactions, liprin-α1 assembles large higher-order molecular complexes; however, the regulation of this complex assembly/disassembly is unknown. Liquid-liquid phase separation (LLPS) is a process that concentrates proteins within cellular nano-domains to facilitate efficient spatiotemporal signaling in response to signaling cascades. While there is no report that liprin-α1 spontaneously undergoes LLPS, we found that GFP-liprin-α1 expressed in HEK293 cells occasionally forms droplet-like condensates. MS-based interactomics identified Protein Phosphatase 2A (PP2A)/B56δ (PPP2R5D) trimers as specific interaction partners of liprin-α1 through a canonical Short Linear Interaction Motif (SLiM) in its N-terminal dimerization domain. Mutation of this SLiM nearly abolished PP2A interaction, and resulted in significantly increased LLPS. GFP-liprin-α1 showed significantly increased droplet formation in HEK293 cells devoid of B56δ (PPP2R5D knockout), suggesting that PPP2R5D/PP2A holoenzyme inhibits liprin-α1 LLPS. Guided by reported liprin-α1 Ser/Thr phosphorylation sites, we found liprin-α1 phospho-mimetic mutant at serine 763 (S763E) is sufficient to drive its LLPS. Domain mapping studies of liprin-α1 indicated that the intrinsically disordered region, the N-terminal dimerization domain, and the SAM domains are all necessary for liprin-α1 LLPS. Finally, expression of p.E420K, a human PPP2R5D variant causing Houge-Janssens Syndrome type 1 (also known as Jordan's Syndrome), significantly compromised suppression of liprin-α1 LLPS. Our work identified B56δ-PP2A holoenzyme as an inhibitor of liprin-α1 LLPS via regulation at multiple phosphorylation sites.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11213027 | PMC |
http://dx.doi.org/10.1101/2024.06.18.599485 | DOI Listing |
Cells
December 2024
Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky av.4, 194064 St. Petersburg, Russia.
Natural aging and age-related diseases involve the acceleration of replicative aging, or senescence. Multiple proteins are known to participate in these processes, including the promyelocytic leukemia (PML) protein, which serves as a core component of nuclear-membrane-less organelles known as PML nuclear bodies (PML-NBs). In this work, morphological changes in PML-NBs and alterations in PML protein localization at the transition of primary fibroblasts to a replicative senescent state were studied by immunofluorescence.
View Article and Find Full Text PDFGenes (Basel)
December 2024
Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047, Japan.
Background/objectives: Actin plays a crucial role not only in the cytoplasm, but also in the nucleus, influencing various cellular behaviors, including cell migration and gene expression. Recent studies reveal that nuclear actin dynamics is altered by cellular stresses, such as DNA damage; however, the effect of heat shock on nuclear actin dynamics, particularly in the nucleolus, remains unclear. This study aims to elucidate the contribution of nucleolar actin to cellular responses under heat shock conditions.
View Article and Find Full Text PDFBiomolecules
November 2024
School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
Autophagy is an important catabolic process to maintain cellular homeostasis and antagonize cellular stresses. The initiation and activation are two of the most important aspects of the autophagic process. This review focuses on mechanisms underlying autophagy initiation and activation and signaling pathways regulating the activation of autophagy found in recent years.
View Article and Find Full Text PDFBiol Direct
January 2025
Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China.
Background: Liquid-liquid phase separation (LLPS) is essential for the formation of membraneless organelles and significantly influences cellular compartmentalization, chromatin remodeling, and gene regulation. Previous research has highlighted the critical function of liquid-liquid biopolymers in the development of hepatocellular carcinoma (HCC).
Methods: This study conducted a comprehensive review of 3,685 liquid-liquid biopolymer regulators, leading to the development of a LLPS related Prognostic Risk Score (LPRS) for HCC through bootstrap-based univariate Cox, Random Survival Forest (RSF), and LASSO analyses.
J Chem Inf Model
January 2025
Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China.
The molecular basis for the liquid-liquid phase separation (LLPS) behavior of various biomolecular components in the cell is the formation of multivalent and low-affinity interactions. When the content of these components exceeds a certain critical concentration, the molecules will spontaneously coalesce to form a new liquid phase; i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!