The physiological response of a cell to stimulation depends on its proteome configuration. Therefore, the abundance variation of regulatory proteins across unstimulated single cells can be associatively linked with their response to stimulation. Here we developed an approach that leverages this association across individual cells and nuclei to systematically identify potential regulators of biological processes, followed by targeted validation. Specifically, we applied this approach to identify regulators of nucleocytoplasmic protein transport in macrophages stimulated with lipopolysaccharide (LPS). To this end, we quantified the proteomes of 3,412 individual nuclei, sampling the dynamic response to LPS treatment, and linking functional variability to proteomic variability. Minutes after the stimulation, the protein transport in individual nuclei correlated strongly with the abundance of known protein transport regulators, thus revealing the impact of natural protein variability on functional cellular response. We found that simple biophysical constraints, such as the quantity of nuclear pores, partially explain the variability in LPS-induced nucleocytoplasmic transport. Among the many proteins newly identified to be associated with the response, we selected 16 for targeted validation by knockdown. The knockdown phenotypes confirmed the inferences derived from natural protein and functional variation of single nuclei, thus demonstrating the potential of (sub-)single-cell proteomics to infer functional regulation. We expect this approach to generalize to broad applications and enhance the functional interpretability of single-cell omics data.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11212961 | PMC |
http://dx.doi.org/10.1101/2024.06.17.599449 | DOI Listing |
J Biomed Sci
January 2025
Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
Background: Recent studies indicate that N6-methyladenosine (mA) RNA modification may regulate ferroptosis in cancer cells, while its molecular mechanisms require further investigation.
Methods: Liquid Chromatography-Tandem Mass Spectrometry (HPLC/MS/MS) was used to detect changes in mA levels in cells. Transmission electron microscopy and flow cytometry were used to detect mitochondrial reactive oxygen species (ROS).
Sci Rep
January 2025
Kidney Histomorphology and Molecular Biology Laboratory, Nephrology Unit, Department of Medicine - DIMED, University of Padua, Via Giustiniani 2, 35128, Padua, Italy.
Parietal Epithelial Cells (PECs) activation and proliferation are common to several distinct forms of glomerulopathies. Due to several stimuli, PECs can change to a progenitor (CD24 and CD133/2) or a pro-sclerotic (CD44) phenotype. In addition, PECs, which are constantly exposed to filtered albumin, are known to be involved in albumin internalization, but how this mechanism occurs is unknown.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2025
Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Türkiye.
J Cell Mol Med
January 2025
Department of Medical Biology, Faculty of Medicine, Kutahya Health Sciences University, Kutahya, Turkey.
Chemotherapy is a potent tool against cancer, but drug resistance remains a major obstacle. To combat this, understanding the molecular mechanisms behind resistance in cancer cells and the protein expression changes driving these mechanisms is crucial. Targeting the Ubiquitin-Proteasome System (UPS) has proven effective in treating multiple myeloma and shows promise for solid tumours.
View Article and Find Full Text PDFCell Death Dis
January 2025
School of Public Health, Wenzhou Medical University; Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou, 325035, China.
Radiotherapy is one of the main treatment modalities for advanced hepatocellular carcinoma (HCC). Ferroptosis has been shown to promote the radiosensitivity of HCC cells, but it remains unclear whether epigenetic regulations function in this process. In this study, we found that the overexpression of METTL3 was associated with poor prognosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!