A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Covert actions of epidural stimulation on spinal locomotor circuits. | LitMetric

Spinal circuitry produces the rhythm and patterning of locomotion. However, both descending and sensory inputs are required to initiate and adapt locomotion to the environment. Spinal cord injury (SCI) disrupts descending controls of the spinal cord, producing paralysis. Epidural stimulation (ES) is a promising clinical therapy for motor control recovery and is capable of reactivating the lumbar spinal locomotor networks, yet little is known about the effects of ES on locomotor neurons. Previously, we found that both sensory afferent pathways and serotonin exert mixed excitatory and inhibitory actions on lumbar interneurons involved in the generation of the locomotor rhythm, identified by the transcription factor Shox2. However, after chronic complete SCI, sensory afferent inputs to Shox2 interneurons become almost exclusively excitatory and Shox2 interneurons are supersensitive to serotonin. Here, we investigated the effects of ES on these SCI-induced changes. Inhibitory input from sensory pathways to Shox2 interneurons was maintained and serotonin supersensitivity was not observed in SCI mice that received daily sub-motor threshold ES. Interestingly, the effects of ES were maintained for at least three weeks after the ES was discontinued. In contrast, the effects of ES were not observed in Shox2 interneurons from mice that received ES after the establishment of the SCI-induced changes. Our results demonstrate mechanistic actions of ES at the level of identified spinal locomotor circuit neurons and the effectiveness of early treatment with ES on preservation of spinal locomotor circuitry after SCI, suggesting possible therapeutic benefits prior to the onset of motor rehabilitation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11213016PMC
http://dx.doi.org/10.1101/2024.06.18.599598DOI Listing

Publication Analysis

Top Keywords

spinal locomotor
16
shox2 interneurons
16
epidural stimulation
8
spinal cord
8
sensory afferent
8
sci-induced changes
8
mice received
8
spinal
7
locomotor
6
interneurons
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!