Mitochondrial dysfunction is a key driver of cardiovascular disease (CVD) in metabolic syndrome and diabetes. This dysfunction promotes the production of reactive oxygen species (ROS), which cause oxidative stress and inflammation. Angiotensin II, the main mediator of the renin-angiotensin-aldosterone system, also contributes to CVD by promoting ROS production. Reduced activity of sirtuins (SIRTs), a family of proteins that regulate cellular metabolism, also worsens oxidative stress. Reduction of energy production by mitochondria is a common feature of all metabolic disorders. High SIRT levels and 5' adenosine monophosphate-activated protein kinase signaling stimulate hypoxia-inducible factor 1 beta, which promotes ketosis. Ketosis, in turn, increases autophagy and mitophagy, processes that clear cells of debris and protect against damage. Sodium-glucose cotransporter-2 inhibitors (SGLT2i), a class of drugs used to treat type 2 diabetes, have a beneficial effect on these mechanisms. Randomized clinical trials have shown that SGLT2i improves cardiac function and reduces the rate of cardiovascular and renal events. SGLT2i also increase mitochondrial efficiency, reduce oxidative stress and inflammation, and strengthen tissues. These findings suggest that SGLT2i hold great potential for the treatment of CVD. Furthermore, they are proposed as anti-aging drugs; however, rigorous research is needed to validate these preliminary findings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11212744 | PMC |
http://dx.doi.org/10.5493/wjem.v14.i2.91519 | DOI Listing |
Hum Mol Genet
January 2025
Ophthalmology Department, Tongxiang First People's hospital, No. 1918 Jiaochang East Road, Tongxiang, Zhejiang 314500, China.
Activation of bone morphogenetic protein (BMP) 4 signaling promotes the survival of retinal ganglion cell (RGC) after acute injury. In this study, we investigated the role of the BMP4 signaling pathway in regulating the degeneration of retinal ganglion cells (RGCs) in a mouse glaucoma model and its potential application in retinal stem cell. Our results demonstrate that BMP4-GPX4 not only reduces oxidative stress and iron accumulation but also promotes neuroprotective factors that support the survival of transplanted RSCs into the host retina.
View Article and Find Full Text PDFCurr Res Microb Sci
January 2025
Université de Poitiers, UMR CNRS 7267, Ecologie et Biologie des Interactions, France.
, the causative agent of Legionnaires' disease, interacts in the environment with free-living amoebae that serve as replicative niches for the bacteria. Among these amoebae, is a natural host in water networks and a model commonly used to study the interaction between and its host. However, certain crucial aspects of this interaction remain unclear.
View Article and Find Full Text PDFPurpose: In vitro, oocyte development is susceptible to oxidative stress, which leads to endoplasmic reticulum (ER) stress. This study investigated whether the antioxidant melatonin attenuates ER stress and maintains oocyte-cumulus cell communication during the in vitro growth (IVG) of bovine oocytes.
Methods: Oocyte-granulosa cell complexes (OGCs) were harvested from slaughterhouse-derived ovaries and grown in vitro for 5 d at 38.
Front Plant Sci
January 2025
College of Agriculture, Agricultural University of Hunan, Changsha, China.
Introduction: Heavy metal soil pollution is a global issue that can be efficiently tackled through the process of phytoremediation. The use of rapeseed in the phytoremediation of heavy metal-contaminated agricultural land shows great potential. Nevertheless, its ability to tolerate heavy metal stress at the molecular level remains unclear.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Institute of Chinese Materia Medica, Shaanxi Provincial Academy of Traditional Chinese Medicine, Xi'an, Shaanxi, China.
Drought stress inhibits Bunge () seedling growth and yield. Here, we studied the effects of drought stress on the different parts of seedlings through physiological, transcriptomic, and metabolomics analyses, and identified key genes and metabolites related to drought tolerance. Physiological analysis showed that drought stress increased the accumulation of hydrogen peroxide (HO), enhanced the activity of peroxidase (POD), decreased the activity of catalase (CAT) and the contents of chlorophyll b and total chlorophyll, reduced the degree of photosynthesis, enhanced oxidative damage in seedlings, and inhibited the growth of plants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!