Members of the multiple antibiotic resistance regulator (MarR) protein family are ubiquitous in bacteria and play critical roles in regulating cellular metabolism and antibiotic resistance. MarR family proteins function as repressors, and their interactions with modulators induce the expression of controlled genes. The previously characterized modulators are insufficient to explain the activities of certain MarR family proteins. However, recently, several MarR family proteins have been reported to sense sulfane sulfur, including zero-valent sulfur, persulfide (R-SSH), and polysulfide (R-SnH,  ≥ 2). Sulfane sulfur is a common cellular component in bacteria whose levels vary during bacterial growth. The changing levels of sulfane sulfur affect the expression of many MarR-controlled genes. Sulfane sulfur reacts with the cysteine thiols of MarR family proteins, causing the formation of protein thiol persulfide, disulfide bonds, and other modifications. Several MarR family proteins that respond to reactive oxygen species (ROS) also sense sulfane sulfur, as both sulfane sulfur and ROS induce the formation of disulfide bonds. This review focused on MarR family proteins that sense sulfane sulfur. However, the sensing mechanisms reviewed here may also apply to other proteins that detect sulfane sulfur, which is emerging as a modulator of gene regulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11211675PMC
http://dx.doi.org/10.1002/mlf2.12109DOI Listing

Publication Analysis

Top Keywords

sulfane sulfur
36
marr family
28
family proteins
28
sense sulfane
16
sulfur
10
sulfane
9
marr
8
proteins
8
proteins sense
8
antibiotic resistance
8

Similar Publications

Protective role of 3-mercaptopyruvate sulfurtransferase (MPST) in the development of metabolic syndrome and vascular inflammation.

Pharmacol Res

January 2025

Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation Academy of Athens, Greece; Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece. Electronic address:

Metabolic syndrome (MetS) is a cluster of metabolic abnormalities that occur concurrently and increase the risk of cardiovascular disease. 3-mercaptopyruvate sulfurtransferase (MPST) is a cysteine-catabolizing enzyme that yields pyruvate and hydrogen sulfide (HS) and plays a central role in the regulation of energy homeostasis. Herein, we seek to investigate the role of MPST/HS in MetS and its cardiovascular consequences using a mouse model of the disease.

View Article and Find Full Text PDF

Unfolded protein response (UPR) is activated in cells under endoplasmic reticulum (ER) stress. One sensor protein involved in this response is PERK, which is activated through its redox-dependent oligomerization. Prolonged UPR activation is associated with the development and progression of various diseases, making it essential to understanding the redox regulation of PERK.

View Article and Find Full Text PDF

Representatives of the colorless sulfur bacteria of the genus use reduced sulfur compounds in the processes of lithotrophic growth, which is accompanied by the storage of intracellular sulfur. However, it is still unknown how the transformation of intracellular sulfur occurs in representatives. Annotation of the genome of D-402 did not identify any genes for the oxidation or reduction of elemental sulfur.

View Article and Find Full Text PDF

Cysteine-Persulfide Sulfane Sulfur-Ligated Zn Complex of Sulfur-Carrying SufU in the SufCDSUB System for Fe-S Cluster Biosynthesis.

Inorg Chem

October 2024

Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan.

SufU, a component of the SufCDSUB Fe-S cluster biosynthetic system, serves as a Zn-dependent sulfur-carrying protein that delivers inorganic sulfur in the form of cysteine persulfide from SufS to SufBCD. To understand this sulfur delivery mechanism, we studied the X-ray crystal structure of SufU and its sulfur-carrying state (persulfurated SufU) and performed functional analysis of the conserved amino acid residues around the Zn sites. Interestingly, sulfur-carrying SufU with Cys41-persulfide (Cys41-S-S) exhibited a unique Zn coordination structure, in which electrophilic S is ligated to Zn and nucleophilic/anionic S is bound to distally conserved Arg125.

View Article and Find Full Text PDF

Protein persulfidation in plants: mechanisms and functions beyond a simple stress response.

Biol Chem

September 2024

INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany.

Posttranslational modifications (PTMs) can modulate the activity, localization and interactions of proteins and (re)define their biological function. Understanding how changing environments can alter cellular processes thus requires detailed knowledge about the dynamics of PTMs in time and space. A PTM that gained increasing attention in the last decades is protein persulfidation, where a cysteine thiol (-SH) is covalently bound to sulfane sulfur to form a persulfide (-SSH).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!