AI Article Synopsis

  • Research shows that sleep deprivation (SD) negatively impacts the growth and development of oocytes in adolescent female mice, highlighting a lack of extensive studies on this issue.
  • The study established SD conditions in 3-week-old female mice and discovered significant changes in gut microbiota and metabolic profiles related to premature ovarian insufficiency (POI), such as increased cell apoptosis and hormonal imbalances.
  • Transferring gut microbiota from SD females to healthy ones led to POI symptoms, but supplementing with niacinamide (NAM) helped improve conditions in SD females, suggesting a potential therapeutic approach.

Article Abstract

Currently, there are occasional reports of health problems caused by sleep deprivation (SD). However, to date, there remains a lack of in-depth research regarding the effects of SD on the growth and development of oocytes in females. The present work aimed to investigate whether SD influences ovarian folliculogenesis in adolescent female mice. Using a dedicated device, SD conditions were established in 3-week old female mice (a critical stage of follicular development) for 6 weeks and gut microbiota and systemic metabolomics were analyzed. Analyses were related to parameters of folliculogenesis and reproductive performance of SD females. We found that the gut microbiota and systemic metabolomics were severely altered in SD females and that these were associated with parameters of premature ovarian insufficiency (POI). These included increased granulosa cell apoptosis, reduced numbers of primordial follicles (PmFs), correlation with decreased AMH, E2, and increased LH in blood serum, and a parallel increased number of growing follicles and changes in protein expression compatible with PmF activation. SD also reduced oocyte maturation and reproductive performance. Notably, fecal microbial transplantation from SD females into normal females induced POI parameters in the latter while niacinamide (NAM) supplementation alleviated such symptoms in SD females. Gut microbiota and alterations in systemic metabolomics caused by SD induced POI features in juvenile females that could be counteracted with NAM supplementation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11209713PMC
http://dx.doi.org/10.7150/thno.95197DOI Listing

Publication Analysis

Top Keywords

systemic metabolomics
16
gut microbiota
12
sleep deprivation
8
premature ovarian
8
ovarian insufficiency
8
female mice
8
microbiota systemic
8
reproductive performance
8
females gut
8
induced poi
8

Similar Publications

Deficiency of the V-domain immunoglobulin suppressor of T-cell activation (VISTA) accelerates disease progression in lupus-prone mice, and activation of VISTA shows therapeutic effects in mouse models of a lupus-like disease. Metabolic reprogramming of T cells in systemic lupus erythematosus (SLE) patients is important in regulating T-cell function and disease progression. However, the mechanism by which VISTA affects the immunometabolism in SLE remains unclear.

View Article and Find Full Text PDF

The management of glaucoma in pregnancy and breastfeeding requires a careful evaluation of treatment choices to guarantee the well-being of both the mother and the developing fetus. This review explores the intricacies of controlling glaucoma in pregnant and breastfeeding women, including a comprehensive overview of existing glaucoma treatment methods, clinical guidelines, and future therapeutic approaches. The efficacy and safety profiles of traditional treatment approaches, such as topical and systemic medicines and surgical treatments, are evaluated specifically about their use during pregnancy and breastfeeding.

View Article and Find Full Text PDF

Polycystic ovary syndrome (PCOS) involves complex genetic, metabolic, endocrine, and environmental factors. This study explores the effects of nicotinamide mononucleotide (NMN) in a letrozole-induced PCOS mouse model, focusing on metabolic regulation. Letrozole-induced aromatase inhibition elevated androgen and reduced bile acid levels, linking liver dysfunction and gut imbalance to PCOS.

View Article and Find Full Text PDF

The National Cancer Institute (NCI) recognizes the potential of technologies based on the use of nanoparticles (NPs) in revolutionizing clinical approaches to the diagnosis and prognosis of cancer. Recent research suggests that once NPs come into contact with the biological fluid of cancer patients, they are covered by proteins, forming a "protein corona" composed of hundreds of plasma proteins. The concept of a personalized, disease-specific protein corona, demonstrating substantial differences in NP corona profiles between patients with and without cancer, has been introduced.

View Article and Find Full Text PDF

Human primary (hpBMEC) and induced pluripotent stem cell (iPSC)-derived brain microvascular endothelial-like cells (hiBMEC) are interchangeably used in blood-brain barrier models to study neurological diseases and drug delivery. Both hpBMEC and hiBMEC use glutamine as a source of carbon and nitrogen to produce metabolites and build proteins essential to cell function and communication. We used metabolomic, transcriptomic, and computational methods to examine how hpBMEC and hiBMEC metabolize glutamine, which may impact their utility in modeling the blood-brain barrier.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!