Objective: Neighborhood disadvantage is associated with worse health and cognitive outcomes. Morphological similarity network (MSN) is a promising approach to elucidate cortical network patterns underlying complex cognitive functions. We hypothesized that MSNs could capture intricate changes in cortical patterns related to neighborhood disadvantage and cognitive function, potentially explaining some of the risk for later life cognitive impairment among individuals who live in disadvantaged contexts.
Methods: This cross-sectional study included cognitively unimpaired participants (n=524, age=62.96±8.377, gender (M:F)=181:343, ADI(L:H) =450,74) from the Wisconsin Alzheimer's Disease Research Center or Wisconsin Registry for Alzheimer's Prevention. Neighborhood disadvantage status was obtained using the Area Deprivation Index (ADI). Cognitive performance was assessed through six tests evaluating memory, executive functioning, and the modified preclinical Alzheimer's cognitive composite (mPACC). Morphological Similarity Networks (MSN) were constructed for each participant based on the similarity in distribution of cortical thickness of brain regions, followed by computation of local and global network features. We used linear regression to examine ADI associations with cognitive scores and MSN features. The mediating effect of MSN features on the relationship between ADI and cognitive performance was statistically assessed.
Results: Neighborhood disadvantage showed negative association with category fluency, implicit learning speed, story recall and mPACC scores, indicating worse cognitive function among those living in more disadvantaged neighborhoods. Local network features of frontal and temporal brain regions differed based on ADI status. Centrality of left lateral orbitofrontal region showed a partial mediating effect between association of neighborhood disadvantage and story recall performance.
Conclusion: Our findings suggest differences in local cortical organization by neighborhood disadvantage, which also partially mediated the relationship between ADI and cognitive performance, providing a possible network-based mechanism to, in-part, explain the risk for poor cognitive functioning associated with disadvantaged neighborhoods. Future work will examine the exposure to neighborhood disadvantage on structural organization of the brain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11213155 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!