The automotive industry is always seeking novel solutions to improve the durability and the performance of textile materials used in vehicles. Indeed, especially after the coronavirus pandemic, antibacterial treatments have gained interest for their potential of ensuring cleanliness and safety toward microbial contamination within vehicles. This study gives a panoramic view of the durability of antibacterial treatments applied on textile materials in the automotive industry, focusing on their performance after experiencing accelerated aging processes. Two different textile materials, a fabric and a synthetic leather, both treated with antibacterial agents, were tested according to ISO 22196 and ISO 20743 standards, respectively, using two model microorganisms, and . The impact of mechanical, thermal, and solar aging on the antibacterial properties has been evaluated. In addition, scanning electron microscope (SEM) analysis was performed to investigate the surface morphology of the materials before and after aging. Furthermore, contact angle measurements were conducted. The results suggest that neither mechanical nor thermal aging processes determined diminished antibacterial action. It was determined, instead, that the most damaging stressor for both textile materials was UV aging, causing severe surface alterations and a reduction in antibacterial activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11209923PMC
http://dx.doi.org/10.1021/acsomega.4c01272DOI Listing

Publication Analysis

Top Keywords

textile materials
20
antibacterial treatments
12
automotive industry
12
durability antibacterial
8
treatments applied
8
applied textile
8
materials automotive
8
aging processes
8
mechanical thermal
8
materials aging
8

Similar Publications

Background: In this study, thermophilic pectinase-producing strains were isolated. Among all the isolates, strain No. 4 was identified as Aspergillus fumigatus BT-4 based on its morphology and 18 S rDNA analysis.

View Article and Find Full Text PDF

The purpose of this review is to gain attention about intro the advanced and green technology that has dual action for both clean wastewater and produce energy. Water scarcity and the continuous energy crisis have arisen as major worldwide concerns, requiring the creation of ecologically friendly and sustainable energy alternatives. The rapid exhaustion of fossil resources needs the development of alternative energy sources that reduce carbon emissions while maintaining ecological balance.

View Article and Find Full Text PDF

Fabrication of photo-responsive self-deicing surface with micro-nano rough structures on fabrics.

J Colloid Interface Sci

December 2024

Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China; Key Laboratory of Green Cleaning Technology & Detergent of Zhejiang Province, Lishui, Zhejiang 323000, PR China; Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, Zhejiang 312000, PR China.

Photothermal superhydrophobic treatment is an effective anti-icing and de-icing method, avoiding damage to equipment caused by ice accumulation in winter. However, the traditional photothermal materials were expensive and the photothermal conversion coatings are hard to remove when unnecessary. Herein, three biochar microspheres with solid, hollow, and flower-like structures (SBMs, HBMs, FBMs) were fabricated to construct photothermal superhydrophobic coatings on the polyester fabric (PET), respectively.

View Article and Find Full Text PDF

Textiles provide a valuable source of information regarding past cultures and their artistic practices. Understanding ancient textiles requires identifying the raw materials used, since the origin of dyes and fibers may be from plants or animals, with the specific species used varying based on geography, trade routes and cultural significance. A selection of nine Chancay textile fragments attributed to 800-1200 CE were studied with liquid chromatography mass spectrometry (LC-MS) and direct analysis in real time mass spectrometry (DART-MS) to identify the chemical compounds in extracts of natural dyes used to create green, blue, red, yellow and black colors.

View Article and Find Full Text PDF

Large-area radiation-modulated thermoelectric fabrics for high-performance thermal management and electricity generation.

Sci Adv

January 2025

National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China.

Flexible thermoelectric systems capable of converting human body heat or solar heat into sustainable electricity are crucial for the development of self-powered wearable electronics. However, challenges persist in maintaining a stable temperature gradient and enabling scalable fabrication for their commercialization. Herein, we present a facile approach involving the screen printing of large-scale carbon nanotube (CNT)-based thermoelectric arrays on conventional textile.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!