Direct Synthesis of Zinc-Blende ZnSe Nanoplatelets.

ACS Omega

Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara 06800, Turkey.

Published: June 2024

The distinct optical properties and electronic structures of two-dimensional colloidal nanoplatelets (NPLs) have garnered significant scientific and practical interest. However, concerns regarding the toxicity of cadmium-based NPLs and their limited spectral coverage show the importance of developing nontoxic alternatives. In this study, we devised a new synthetic approach for the direct synthesis of zinc-blende (ZB) ZnSe NPLs. By introducing two different zinc precursors, short-chain metal carboxylate- zinc acetate, and metal halide-zinc chloride, we successfully synthesized two-dimensional ZB ZnSe NPLs. By modifying the reaction parameters, we obtained two different populations of ZnSe NPLs, characterized by the first absorption peak at "343" and "367 nm". Ostwald ripening experiments further confirmed the formation of 2D ZnSe NPLs by the observed discrete growth mechanism. Lastly, we investigated the impact of surface ligands on the excitonic properties of ZB ZnSe NPLs by treating their initially carboxylic acid-capped surface with oleylamine. Remarkably, we observed significant red-shifting in the first excitonic peaks, up to 130 meV, in a reversible manner, demonstrating further tunability of excitonic features in ZnSe NPLs. We anticipate that our findings will serve as a catalyst for further exploration of nontoxic two-dimensional materials, fostering their investigation and application in various fields.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11209924PMC
http://dx.doi.org/10.1021/acsomega.4c02356DOI Listing

Publication Analysis

Top Keywords

znse npls
24
direct synthesis
8
synthesis zinc-blende
8
zinc-blende znse
8
npls
8
znse
7
znse nanoplatelets
4
nanoplatelets distinct
4
distinct optical
4
optical properties
4

Similar Publications

Direct Synthesis of Zinc-Blende ZnSe Nanoplatelets.

ACS Omega

June 2024

Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara 06800, Turkey.

The distinct optical properties and electronic structures of two-dimensional colloidal nanoplatelets (NPLs) have garnered significant scientific and practical interest. However, concerns regarding the toxicity of cadmium-based NPLs and their limited spectral coverage show the importance of developing nontoxic alternatives. In this study, we devised a new synthetic approach for the direct synthesis of zinc-blende (ZB) ZnSe NPLs.

View Article and Find Full Text PDF

Methanol is not only a promising liquid hydrogen carrier but also an important feedstock chemical for chemical synthesis. Catalyst design is vital for enabling the reactions to occur under ambient conditions. This study reports a new class of van der Waals heterojunction photocatalyst, which is synthesized by hot-injection method, whereby carbon dots (CDs) are grown in situ on ZnSe nanoplatelets (NPLs), i.

View Article and Find Full Text PDF

The morphology of nanocrystals serves as a powerful handle to modulate their functional properties. For semiconducting nanostructures, the shape is no less important than the size and composition, in terms of determining the electronic structure. For example, in the case of nanoplatelets (NPLs), their two-dimensional (2D) electronic structure and atomic precision along the axis of quantum confinement makes them well-suited as pure color emitters and optical gain media.

View Article and Find Full Text PDF

Zn chalcogenides are suitable candidates for blue-emitting fluorophores in light-emitting devices. In particular, the efforts to grow ZnSe nanocrystals (NCs) with fine control over size and shape via bottom-up approaches have faced challenges because of the slow decomposition of Zn precursors. In this study, we report direct cation exchange from CdSe NCs to ZnSe.

View Article and Find Full Text PDF

An efficient and a selective charge extraction from a new type of heterostructured material is demonstrated: the quasi-type-II structure formed upon deposition of ZnSe quantum dots on CdSe nanoplatelets, termed as CdSe/ZnSe dots-on-plates (DoPs) heterostructures. Insights into the charge extraction mechanism are gained from the present studies. Quenching experiments on nanoplatelets (NPLs) and DoPs using electron (benzoquinone) and hole (pyridine) quenchers show the possibility of electron extraction leaving behind the hole in the nanostructures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!