Curcumin has demonstrated promising preclinical antiobesity effects, but its low bioavailability makes it difficult to exert its full effect at a suitable dose. The objective of this study was to screen curcumin derivatives with enhanced bioavailability and lipid-lowering activity under the guidance of computer-aided drug design (CADD). CAAD was used to perform virtual assays on curcumin derivatives to assess their pharmacokinetic properties and effects on pancreatic lipase activity. Subsequently, 19 curcumin derivatives containing 5 skeletons were synthesized to confirm the above virtual assay. The in vitro pancreatic lipase inhibition assay was employed to determine the half-maximal inhibitory concentration (IC) of these 19 curcumin derivatives. Based on CADD analysis and in vitro pancreatic lipase inhibition, 2 curcumin derivatives outperformed curcumin in both aspects. Microscale thermophoresis (MST) experiments were employed to assess the binding equilibrium constants ( ) of the aforementioned 2 curcumin derivatives, curcumin, and the positive control drug with pancreatic lipase. Through virtual screening utilizing a chemoinformatics database and molecular docking, 6 derivatives of curcumin demonstrated superior solubility, absorption, and pancreatic lipase inhibitory activity compared to curcumin. The IC value for 1,7-bis(4-hydroxyphenyl)heptane-3,5-dione (C4), which displayed the most effective inhibitory effect, was 42.83 μM, while the IC value for 1,7-bis(4-hydroxy-3-methoxyphenyl)heptane-3,5-dione (C6) was 98.62 μM. On the other hand, the IC value for curcumin was 142.24 μM. The MST experiment results indicated that the values of C4, C6, and curcumin were 2.91, 18.20, and 23.53 μM, respectively. The results of the activity assays exhibited a relatively high degree of concordance with the outcomes yielded by CADD screening. Under the guidance of CADD, the targeted screening of curcumin derivatives with excellent properties in this study exhibited high-efficiency and low-cost benefits.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11209693 | PMC |
http://dx.doi.org/10.1021/acsomega.4c03596 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!