Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Green surfactant (GS) flooding, an environmentally friendly chemical Enhanced Oil Recovery (cEOR) method, is explored in this molecular dynamics (MD) simulation study. This study evaluates the ability of ()-2-dodecanamido-aminobutanedioic as a GS for cEOR, assessing its performance with hexane (C6), dodecane (C12), and eicosane (C20) as representative oils. In the case of the bulk system, a comprehensive molecular-level investigation provides structural details such as the radial distribution function, solvent-accessible surface area, GS adsorption dynamics, diffusivity, and emulsion stability of the GS, oil, and water systems. Also the impact of the three distinct oils on interfacial tension was examined in the existence of GS molecules. The findings reveal rapid GS molecule aggregation and adsorption on oil droplets, with various impacts on emulsion stability depending on the oil type. Additionally, GS enhances the aggregation of heavy C20 oil molecules in a water medium. The study demonstrates GS's role as an effective emulsifier, facilitating oil droplet recovery, with electrostatic interactions governing micelle formation and van der Waals interactions influencing oil droplet emulsification. These results align with prior experimental data, affirming GS's promising application potential in cEOR while prioritizing environmental sustainability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11209909 | PMC |
http://dx.doi.org/10.1021/acsomega.4c01332 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!