A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fully flexible implantable neural probes for electrophysiology recording and controlled neurochemical modulation. | LitMetric

Targeted delivery of neurochemicals and biomolecules for neuromodulation of brain activity is a powerful technique that, in addition to electrical recording and stimulation, enables a more thorough investigation of neural circuit dynamics. We have designed a novel, flexible, implantable neural probe capable of controlled, localized chemical stimulation and electrophysiology recording. The neural probe was implemented using planar micromachining processes on Parylene C, a mechanically flexible, biocompatible substrate. The probe shank features two large microelectrodes (chemical sites) for drug loading and sixteen small microelectrodes for electrophysiology recording to monitor neuronal response to drug release. To reduce the impedance while keeping the size of the microelectrodes small, poly(3,4-ethylenedioxythiophene) (PEDOT) was electrochemically coated on recording microelectrodes. In addition, PEDOT doped with mesoporous sulfonated silica nanoparticles (SNPs) was used on chemical sites to achieve controlled, electrically-actuated drug loading and releasing. Different neurotransmitters, including glutamate (Glu) and gamma-aminobutyric acid (GABA), were incorporated into the SNPs and electrically triggered to release repeatedly. An in vitro experiment was conducted to quantify the stimulated release profile by applying a sinusoidal voltage (0.5 V, 2 Hz). The flexible neural probe was implanted in the barrel cortex of the wild-type Sprague Dawley rats. As expected, due to their excitatory and inhibitory effects, Glu and GABA release caused a significant increase and decrease in neural activity, respectively, which was recorded by the recording microelectrodes. This novel flexible neural probe technology, combining on-demand chemical release and high-resolution electrophysiology recording, is an important addition to the neuroscience toolset used to dissect neural circuitry and investigate neural network connectivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11211464PMC
http://dx.doi.org/10.1038/s41378-024-00685-6DOI Listing

Publication Analysis

Top Keywords

electrophysiology recording
16
neural probe
16
neural
9
flexible implantable
8
implantable neural
8
novel flexible
8
chemical sites
8
drug loading
8
recording microelectrodes
8
flexible neural
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!