Conventional solutions for wastewater collection focus on reducing overflow events in the sewage network, which can be achieved by adapting sewer infrastructure or, a more cost-effective alternative, by implementing a non-engineering management solution. The state-of-the-art solution is centered on Real-Time Control (RTC), which is already resulting in a positive impact on the environment by decreasing the volume of wastewater being discharged into receiving waters. Researchers have been continuing efforts towards upgrading RTC solutions for sewage systems and a new approach, although rudimentary, was introduced in 1997, known as Pollution-based RTC (P-RTC), which added water quality (concentration or load) information explicitly within the RTC algorithm. Formally, P-RTC is encompassed of several control methodologies using a measurement or estimation of the concentration (i.e. COD or ammonia) of the sewage throughout the network. The use of P-RTC can result in a better control performance with a reduction in concentration of overflowing wastewater observed associated with an increase of concentration of sewage arriving at the Wastewater Treatment Plant (WWTP). The literature revealed that P-RTC can be differentiated by: (1) implementation method; (2) how water quality is incorporated, and (3) overall control objectives. Additionally, this paper evaluates the hydrological models used for P-RTC. The objective of this paper is to compile relevant research in pollution-based modelling and real-time control of sewage systems, explaining the general concepts within each P-RTC category and their differences.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11214442PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e31831DOI Listing

Publication Analysis

Top Keywords

sewage systems
12
control sewage
8
sewage network
8
real-time control
8
water quality
8
control
6
sewage
6
p-rtc
6
review pollution-based
4
pollution-based real-time
4

Similar Publications

Determining environmental risk levels posed to different urban lagoon can provide an important overview regarding the relative severity of the environmental degradation of these ecosystems, increasing the risks visibility, which can be used as an important decision-making tool to prioritize investments. Jacarepaguá Lagoon (JPAL) is part of a coastal lagoon system comprising four interconnected lagoons in Rio de Janeiro city, Southeastern Brazil. Real estate speculation and insufficient sanitation infrastructure resulted in untreated sewage discharge into this ecologically sensitive lagoon system.

View Article and Find Full Text PDF

Studies on the treatment of anaerobically digested sludge by white-rot fungi: evaluation of the effect of Phanerochaete chrysosporium and Trametes versicolor.

Microb Cell Fact

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China.

Background: The composition of anaerobically digested sludge is inherently complex, enriched with structurally complex organic compounds and nitrogenous constituents, which are refractory to biodegradation. These characteristics limit the subsequent rational utilization of resources from anaerobically digested sludge. White-rot fungi (WRF) have garnered significant research interest due to their exceptional capacity to degrade complex and recalcitrant organic pollutants.

View Article and Find Full Text PDF

Deciphering intricate associations between vigorous development and novel metabolic preferences of partial denitrification/anammox granular consortia within mainstream municipal wastewater.

Bioresour Technol

January 2025

National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China. Electronic address:

There is limited understanding of the granular partial denitrification/anammox (PD/A) microbiota and metabolic hierarchy specific to municipal wastewater treatment, particularly concerning the multi-mechanisms of functional differentiation and granulation tendencies under high-loading shocks. Therefore, this study utilized fragmented mature biofilm as the exclusive inoculum to rapidly establish a granular PD/A system. Following long-term feeding with municipal wastewater, PD/A process reached a total nitrogen removal efficiency of 97.

View Article and Find Full Text PDF

Impact of grazing by multiple Daphnia species on wastewater bacterial communities.

Sci Total Environ

January 2025

Department of Civil, Geological, and Mining Engineering, Polytechnique Montreal, Montreal, QC H3C 3A7, Canada. Electronic address:

Understanding the dynamics of fecal bacterial communities is crucial for managing public health risks and protecting drinking water resources. While extensive research exists on how abiotic factors influence the survival of fecal microbial communities in water, less attention has been paid to the impact of predation by higher organisms, such as the widely distributed grazer Daphnia. Nevertheless, Daphnia plays a significant role in regulating bacterial communities in natural aquatic ecosystems, and recent studies highlighted its potential as a biofilter in alternative tertiary wastewater treatment systems.

View Article and Find Full Text PDF

Reduced graphene oxide membrane with small nanosheets for efficient and ultrafast removal of both microplastics and small molecules.

J Hazard Mater

January 2025

Shanghai Applied Radiation Institute, State Key Lab. Advanced Special Steel, Shanghai University, Shanghai 200444, China; Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Provincial Key Laboratory of Resources and Chemistry of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China. Electronic address:

The clogging of sieving pores due to the complex sewage system of mixed molecules and nanoparticles of different scales is a difficulty in the membrane-based separation process. When the holes are reduced to the point where they can repel small molecules in the contaminants, large-molecule contaminants can adsorb to the holes and decrease the permeability. A similar question remains in new promising graphene oxide (GO) membranes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!