The primary purpose of this study was to evaluate the hydraulic coefficient of coarse aggregate grain size beds and hydraulic parameters under random and perpendicular bed configurations, as well as to explore the discharge coefficient for rectangular weirs. The research objectives were to compare flow resistance coefficients, evaluate the discharge coefficient for rectangular weirs, investigate the relationship between roughness coefficient and hydraulic parameters, and validate the theoretical hydraulic equation for the rectangular weir. This was achieved by analysing different bed configurations, bed slopes, and 20 and 30-mm bed materials. Sieve analysis was conducted on bed materials using American-standard sieves to determine their particle size distribution. The experiment was performed in a rectangular flume measuring 12 m in length, 0.31 m in width, and 0.45 m in depth. In a laboratory experiment, water was pumped into a flume using centrifugal pumps, and a rectangular weir was attached downstream for discharge measurement. The experiment investigated factors such as Manning roughness coefficient, bed material geometry, bed slope, and weir shapes. Approximately 1680 tests were conducted to analysed the impact of these factors on discharge and the coefficient of discharge. The average Manning's roughness coefficients for a grain size of 20 mm were 0.019 (with weir) and 0.019 (without weir) in a random bed configuration, and 0.028 (with weir) and 0.027 (without weir) in a perpendicular flow bed configuration. For a grain size of 30 mm, the coefficients were 0.023 (with weir) and 0.022 (without weir) in a random bed configuration, and 0.033 (with weir) and 0.026 (without weir) in a perpendicular flow bed configuration. The presence of a weir has affected Manning's roughness coefficients and discharge coefficients. With a weir, the roughness coefficients have generally been higher compared to without a weir, indicating increased roughness in the channel. The discharge coefficient for a rectangular weir with a grain size of 20 mm ranged from 0.39 to 0.84 (random bed) and 0.27 to 0.68 (perpendicular flow bed), while for a grain size of 30 mm it ranged from 0.31 to 0.81 (random bed) and 0.23 to 0.48 (perpendicular flow bed). The discharge coefficients have varied depending on the grain size and bed configuration, reflecting different flow efficiencies over the weir. Rough particles influenced flow and Manning's roughness coefficient value, then reduced discharge and velocity values. Under two bed configurations and slopes, beds with a grain size of 30 mm have higher roughness coefficients compared to those with a grain size of 20 mm. The models have shown that the roughness coefficient is inversely proportional to the discharge and directly proportional to the tailgate water levels. The coefficient of roughness and discharge coefficient are mainly influenced by the channel slopes, bed roughness, bed grain size, and bed configuration. A randomly configured bed with a 20 mm grain size gravel bed is preferred over a perpendicular bed configuration to handle high discharges. Using a 20 mm grain-size gravel bed in open-channel flow is more suitable than a 30 mm grain-size bed. Relying on the constant friction factor, Manning's n, is not recommended as it may result in design errors. These findings have the potential to improve hydraulic engineering design practices, enhancing the accuracy and efficiency of open-channel flow systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11214450 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e32162 | DOI Listing |
Food Chem
December 2024
School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China; Scientific Research Base of Edible Mushroom Processing Technology Integration of Ministry of Agriculture and Rural Affairs, Changchun 130118, China. Electronic address:
The waste Lentinus edodes stalks from Lentinus edodes processing were used as raw materials by the steam explosion to prepare modified Lentinus edodes stalks dietary fiber and combined with tea polyphenols to form the SE-DF-tea polyphenols complex (SE-DF-TPC). The SE-DF-tea polyphenols mixture (SE-DF-TPM) was prepared according to the complex's optimal adsorption conditions. Fluorescence microscopy, Fourier transform infrared spectroscopy, particle size measurement, thermogravimetric analysis, and X-ray diffraction were used to analyze its structure, and the thermal stability of the complex and its adsorption capacity for lipids, cholesterol, and cholates were studied.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou 516007, China.
W-doped ZnO (WZO) films were deposited on glass substrates by using RF magnetron sputtering at different substrate bias voltages, and the relationships between microstructure and optical and electrical properties were investigated. The results revealed that the deposition rate of WZO films first decreased from 8.8 to 7.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
College of Science, Inner Mongolia University of Technology, Hohhot 010051, China.
Relaxor ferroelectric film capacitors exhibit high power density with ultra-fast charge and discharge rates, making them highly advantageous for consumer electronics and advanced pulse power supplies. The Aurivillius-phase bismuth layered ferroelectric films can effectively achieve a high breakdown electric field due to their unique insulating layer ((BiO) layer)). However, designing and fabricating Aurivillius-phase bismuth layer relaxor ferroelectric films with optimal energy storage characteristics is challenging due to their inherently stable ferroelectric properties.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China.
In this work, the Al-Mo nanocrystalline alloy films with Mo contents ranging from 0-10.5 at.% were prepared via magnetron co-sputtering technology.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, The University of North Carolina at Greensboro, Greensboro, NC, United States.
Tef [ (Zucc.) Trotter] is the major staple crop for millions of people in Ethiopia and Eritrea and is believed to have been domesticated several thousand years ago. Tef has the smallest grains of all the cereals, which directly impacts its productivity and presents numerous challenges to its cultivation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!