Mutations in retinal primary cilia are responsible for human blindness but the mechanisms are not fully understood (Wheway et al., 2014). Characterizing the proteome of an organelle such as cilia, is a fruitful way to understand its function but methods often require considerable sample quantities. Here we develop a method to isolate the primary cilia of photoreceptor cells from bovine retinas. Through LC/MS/MS proteomics analysis we identify proteins enriched for cilia function including ciliopathy disease. This study shows our method can be used to isolate retinal primary cilia to obtain sufficient quantities of native protein samples.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11211918 | PMC |
http://dx.doi.org/10.17912/micropub.biology.001218 | DOI Listing |
Neurobiol Dis
December 2024
Department of Physiology & Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA. Electronic address:
Huntington's disease (HD) is caused by the expansion of a CAG repeat, encoding a string of glutamines (polyQ) in the first exon of the huntingtin gene (HTTex1). This mutant huntingtin protein (mHTT) with extended polyQ forms aggregates in cortical and striatal neurons, causing cell damage and death. The retina is part of the central nervous system (CNS), and visual deficits and structural abnormalities in the retina of HD patients have been observed.
View Article and Find Full Text PDFJ Cell Physiol
January 2025
Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University School of Stomatology, Tianjin Medical University, Tianjin, China.
Primary cilia, functioning as crucial hubs for signal sensing and transduction, are integral to the development and maintenance of homeostasis across various organs. However, their roles in tooth homeostasis and repair remain inadequately understood. In this study, we reveal an indispensable role for primary cilia in regulating the homeostasis and regeneration of teeth, primarily through the regulation of cell proliferation.
View Article and Find Full Text PDFNitric Oxide
December 2024
Key Laboratory for Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China. Electronic address:
Background: Osteocytes are crucial for detecting mechanical stimuli and translating them into biochemical responses within the bone. The primary cilium, a cellular 'antenna,' plays a vital role in this process. However, there is a lack of direct correlation between cilium length changes and osteocyte mechanosensitivity changes.
View Article and Find Full Text PDFCell Rep
December 2024
Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan. Electronic address:
During gestation, the choroid plexus (ChP) produces protein-rich cerebrospinal fluid and matures prior to brain development. It is assumed that ChP dysfunction has a profound effect on developmental neuropsychiatric disorders, such as autism spectrum disorder (ASD). However, the mechanisms linking immature ChP to the onset of ASD remain unclear.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600, Yishan Road, Shanghai, 200233, P. R. China.
Rapid thrombolysis is very important to reduce complications caused by vascular blockage. A promising approach for improving thrombolysis efficiency is utilizing the permanent magnetically actuated locomotion of nanorobots. However, the thrombolytic drug transportation efficiency is challenged by in-plane rotating locomotion and the insufficient drug penetration limits further improvement of thrombolysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!