Despite advancements, the prevalence of HIV-associated neurocognitive impairment remains at approximately 40%, attributed to factors like pre-cART (combination antiretroviral therapy) irreversible brain injury. People with HIV (PWH) treated with cART do not show significant neurocognitive changes over relatively short follow-up periods. However, quantitative neuroimaging may be able to detect ongoing subtle microstructural changes. This study aimed to investigate the sensitivity of tensor-valued diffusion encoding in detecting such changes in brain microstructural integrity in cART-treated PWH. Additionally, it explored relationships between these metrics, neurocognitive scores, and plasma levels of neurofilament light (NFL) chain and glial fibrillary acidic protein (GFAP). Using MRI at 3T, 24 PWH and 31 healthy controls underwent cross-sectional examination. The results revealed significant variations in b-tensor encoding metrics across white matter regions, with associations observed between these metrics, cognitive performance, and blood markers of neuronal and glial injury (NFL and GFAP). Moreover, a significant interaction between HIV status and imaging metrics was observed, particularly impacting total cognitive scores in both gray and white matter. These findings suggest that b-tensor encoding metrics offer heightened sensitivity in detecting subtle changes associated with axonal injury in HIV infection, underscoring their potential clinical relevance in understanding neurocognitive impairment in PWH.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11213220 | PMC |
http://dx.doi.org/10.21203/rs.3.rs-4482269/v1 | DOI Listing |
NMR Biomed
January 2025
A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
Massively multidimensional diffusion magnetic resonance imaging combines tensor-valued encoding, oscillating gradients, and diffusion-relaxation correlation to provide multicomponent subvoxel parameters depicting some tissue microstructural features. This method was successfully implemented ex vivo in microimaging systems and clinical conditions with tensor-valued gradient waveform of variable duration giving access to a narrow diffusion frequency (ω) range. We demonstrate here its preclinical in vivo implementation with a protocol of 389 contrast images probing a wide diffusion frequency range of 18 to 92 Hz at b-values up to 2.
View Article and Find Full Text PDFSci Rep
November 2024
Department of Neurology, University of Rochester, 601 Elmwood Ave, Rochester, NY, 14642, USA.
Despite advancements, the prevalence of HIV-associated neurocognitive impairment remains at approximately 40%, attributed to factors like pre-cART (combination antiretroviral therapy) irreversible brain injury. People with HIV (PWH) treated with cART do not show significant neurocognitive changes over relatively short follow-up periods. However, quantitative neuroimaging may be able to detect ongoing subtle microstructural changes.
View Article and Find Full Text PDFGland Surg
August 2024
Department of Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea.
J Chem Phys
August 2024
Department of Chemistry, Lund University, Lund, Sweden.
Magnetic resonance imaging (MRI) is the method of choice for noninvasive studies of micrometer-scale structures in biological tissues via their effects on the time- and frequency-dependent (restricted) and anisotropic self-diffusion of water. While new designs of time-dependent magnetic field gradient waveforms have enabled disambiguation between different aspects of translational motion that are convolved in traditional MRI methods relying on single pairs of field gradient pulses, data analysis for complex heterogeneous materials remains a challenge. Here, we propose and demonstrate nonparametric distributions of tensor-valued Lorentzian diffusion spectra, or "D(ω) distributions," as a general representation with sufficient flexibility to describe the MRI signal response from a wide range of model systems and biological tissues investigated with modulated gradient waveforms separating and correlating the effects of restricted and anisotropic diffusion.
View Article and Find Full Text PDFDespite advancements, the prevalence of HIV-associated neurocognitive impairment remains at approximately 40%, attributed to factors like pre-cART (combination antiretroviral therapy) irreversible brain injury. People with HIV (PWH) treated with cART do not show significant neurocognitive changes over relatively short follow-up periods. However, quantitative neuroimaging may be able to detect ongoing subtle microstructural changes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!