Unlabelled: Transdermal drug delivery has emerged as an alternative to conventional drug delivery systems as it enables painless and convenient drug administration. However, next-generation healthcare systems need to facilitate "on-demand" delivery operations and should be highly efficient to penetrate the physiological barriers in the skin. Here, we report an ultrathin dye-loaded epidermal tattoo (UDET) that allows wirelessly stimulated drug delivery with high efficiency. The UDET consists of an electrospun dye-loaded silk nanofiber mat and a covered carbon nanotube (CNT) layer. UDETs are conformally tattooed on pigskins and show stable operation under mechanical deformation. Biological fluorescence dyes such as vitamin B, riboflavin, rhodamine B, and sodium fluorescein are applied as model drugs. Illuminating the UDET by a low-power light-emitting diode (< 34.5 mW/cm) triggers transdermal drug delivery due to heat generation. The CNTs convert the absorbed light into heat, and then the dyes loaded on silk can be diffused through the epidermis. The CNT layer is electrically conductive and can detect the temperature by reading the resistance change (0.1917 Ω/°C). This indicates that the UDET can be used simultaneously to read temperature and deliver the loaded dye molecules, making it a promising on-demand drug delivery strategy for future medicine technology.
Supplementary Information: The online version contains supplementary material available at 10.1007/s13534-024-00363-6.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11208351 | PMC |
http://dx.doi.org/10.1007/s13534-024-00363-6 | DOI Listing |
Front Biosci (Elite Ed)
October 2024
Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 1983969411 Tehran, Iran.
Background: Regenerative endodontics requires an innovative delivery system to release antibiotics/growth factors in a sequential trend. This study focuses on developing/characterizing a thermoresponsive core-shell hydrogel designed for targeted drug delivery in endodontics.
Methods: The core-shell chitosan-alginate microparticles were prepared by electrospraying to deliver bone morphogenic protein-2 for 14 days and transforming growth factor-beta 1 (TGF-β1) for 7-14 days.
Biomater Res
December 2024
Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China.
Glioblastoma multiforme (GBM) is among the most challenging malignant brain tumors, making the development of new treatment strategies highly necessary. Glioma stem cells (GSCs) markedly contribute to drug resistance, radiation resistance, and tumor recurrence in GBM. The therapeutic potential of nanomaterials targeting GSCs in GBM urgently needs to be explored.
View Article and Find Full Text PDFOncol Res
December 2024
Department of Biology, College of Science, Sultan Qaboos University, Muscat, 123, Oman.
Nanotechnology in cancer therapy has significantly advanced treatment precision, effectiveness, and safety, improving patient outcomes and personalized care. Engineered smart nanoparticles and cell-based therapies are designed to target tumor cells, precisely sensing the tumor microenvironment (TME) and sparing normal cells. These nanoparticles enhance drug accumulation in tumors by solubilizing insoluble compounds or preventing their degradation, and they can also overcome therapy resistance and deliver multiple drugs simultaneously.
View Article and Find Full Text PDFOncol Res
December 2024
School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), Dublin, D02 YN77, Ireland.
Brain metastasis and primary glioblastoma multiforme represent the most common and lethal malignant brain tumors. Its median survival time is typically less than a year after diagnosis. One of the major challenges in treating these cancers is the efficiency of the transport of drugs to the central nervous system.
View Article and Find Full Text PDF3 Biotech
January 2025
Department of Biotechnology, University of Calicut, Kerala Malappuram, 673635 India.
Rapamycin analogs are approved by the FDA for breast and renal cancer treatment. Hence, the possibility of nanoparticle-mediated delivery of Rapamycin could be examined. In the present study, PEGylated Gold-core shell iron oxide nanoparticles were used for the targeted delivery of Rapamycin, and R-Au-IONPs were formulated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!