Biocatalytic PEI-PSS membranes through aqueous phase separation: influence of casting solution pH and operational temperature.

Soft Matter

Faculty of Science and Technology, Department of Molecules & Materials, MESA+ Institute for Nanotechnology, University of Twente, Enschede 7500 AE, The Netherlands.

Published: July 2024

Biocatalytic membranes combine the separation properties of membranes and the catalytic abilities of enzymes, holding great promise for industries where both purification and conversion are required. In this work, polyelectrolyte complex membranes incorporated with lysozyme were prepared using polyethyleneimine (PEI) and poly(sodium 4-styrenesulfonate) (PSS) through a one-step and mild pH shift aqueous phase separation (APS) approach. The effects of lysozyme addition and casting solution pH on the membrane properties were studied. All the membranes, both with and without added lysozyme, exhibited asymmetric structures with relatively dense top surfaces and porous cross-sections with finger-like macrovoids. The incorporation of lysozyme did not significantly influence the structure and permeability of the formed membranes. The PEI-PSS biocatalytic membranes exhibited temperature dependent enzymatic activity. The activity strongly increased with increased operational temperature, with the highest activity of 4.30 ± 0.15 U cm at 45 °C. This indicates a responsive effect, where a higher temperature leads to some swelling of the polyelectrolyte complex membrane, making the enzyme more accessible to the used substrate. Moreover, the biocatalytic membranes demonstrate desirable enzymatic stability, maintaining 60% activity even after 60 days of storage. This study validates the potential of the water-based APS process as a straightforward approach for integrating enzymes into responsive biocatalytic membranes.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4sm00311jDOI Listing

Publication Analysis

Top Keywords

biocatalytic membranes
16
membranes
9
aqueous phase
8
phase separation
8
casting solution
8
operational temperature
8
polyelectrolyte complex
8
biocatalytic
5
biocatalytic pei-pss
4
pei-pss membranes
4

Similar Publications

Biocatalytic degradation of micropollutants has been extensively explored in both batch and membrane reactors in µg/L to mg/L concentrations and variable water compositions. The degradation of micropollutants by biocatalytic membranes at environmentally relevant concentrations of ng/L range found in natural surface water matrices has not yet been investigated, presumably because of the challenging concentration analysis. This study investigated the limitations of biocatalytic degradation of estradiol (E2) micropollutant at environmentally relevant concentrations by a biocatalytic membrane.

View Article and Find Full Text PDF

An efficient and green method was developed using deep eutectic solvent assistance to enhance the biotransformation method of producing resveratrol from Polygonum cuspidatum Siebold & Zucc, using cellulose-based immobilised Aspergillus niger in the process. Various deep eutectic solvents (DES) were screened to obtain a superior biocatalytic effect. The increase in DES concentration aggravated the degree of cell membrane damage.

View Article and Find Full Text PDF

Innovative strategy of ZIF-90 for co-immobilization of whole cells and enzymes in biocatalytic D-phenyllactic acid synthesis.

Int J Biol Macromol

December 2024

Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Jiaojiang 318000, Zhejiang, China. Electronic address:

In this study, we endeavored to catalyze the biosynthesis of D-phenyllactic (D-PLA) from L-Phenylalanine (L-Phe) through a one-pot method. However, the crucial enzymes for the biosynthesis of phenylpyruvate (PPA), amino acid oxidase (L-AAD), is a membrane-bound protein. Herein, we proposed a novel co-immobilization strategy of whole cells and enzymes, integrating them into ZIF-90 to achieve efficient biosynthesis of D-PLA.

View Article and Find Full Text PDF
Article Synopsis
  • Artificial organs like oxygenators and dialyzers struggle with uneven flow distribution, leading to clot formation and reduced efficiency.
  • This study introduces triply periodic minimal surfaces (TPMS) to enhance flow distribution and examines their impact on blood coagulation through computational fluid dynamics and blood testing.
  • Results show that TPMS, especially anisometric designs, improve flow distribution and significantly reduce blood clotting compared to traditional tubular designs, while also allowing for customizable inner surfaces for better functionality.
View Article and Find Full Text PDF

An enzyme-catalyzed synthesis of rhododendrol, an intermediate in the production of raspberry ketone, was investigated. The approach involves the enzymatic hydrolysis of rhododendrol glycosides into rhododendrol and a glycosidic residue. Rhododendrol glycosides, which are naturally derived from the inner bark of birch trees-a renewable resource-vary considerably in composition depending on the origin of the plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!