Microglia continuously remodel synapses, which are embedded in the extracellular matrix (ECM). However, the mechanisms, which govern this process remain elusive. To investigate the influence of the neural ECM in synaptic remodeling by microglia, we disrupted ECM integrity by injection of chondroitinase ABC (ChABC) into the retrosplenial cortex of healthy adult mice. Using in vivo two-photon microscopy we found that ChABC treatment increased microglial branching complexity and ECM phagocytic capacity and decreased spine elimination rate under basal conditions. Moreover, ECM attenuation largely prevented synaptic remodeling following synaptic stress induced by photodamage of single synaptic elements. These changes were associated with less stable and smaller microglial contacts at the synaptic damage sites, diminished deposition of calreticulin and complement proteins C1q and C3 at synapses and impaired expression of microglial CR3 receptor. Thus, our findings provide novel insights into the function of the neural ECM in deposition of complement proteins and synaptic remodeling by microglia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/glia.24588 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!