Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The present study investigated the neural health benefit of beta-sitosterol (BSS) against trimethyltin (TMT)-induced neurodegeneration in mice. Forty male Institute of Cancer Research (ICR) mice were randomly divided into Sham-veh, TMT-veh, TMT-BSS50, and TMT-BSS100. A one-time intraperitoneal injection of 2.6 mg/kg of TMT was given to mice in TMT groups. Vehicle (veh), BSS 50 mg/kg or BSS 100 mg/kg were orally given for 2 weeks. Spatial learning and memory were evaluated. Brain oxidative status, hippocampal neuropathology, and reactive astrocytes were done. White matter pathology was also evaluated. The results indicated the massy effect of TMT on induced motor ability and spatial memory deficits in accordance with increased neuronal degeneration in Cornus ammonis (CA) 1, CA3, and dentate gyrus (DG) and internal capsule white matter damage. TMT also induced the reduction of reactive astrocytes in CA1 and DG. Brain's catalase activity was significantly reduced by TMT, but not in mice with BSS treatments. Both doses of BSS treatment exhibited improvement in motor ability and spatial memory deficits in accordance with the activation of reactive astrocytes in CA1, CA3, and DG. However, they successfully prevented the increase of neuronal degeneration in CA1 found only with the BSS dose of 100 mg/kg, and it was indicated as the effective dose for neuroprotection in the vulnerable brain area. This study demonstrated mitigative effects of BSS against motor ability and memory deficits with neural health benefits, including a protective effect against CA1 neurodegeneration and a nurturing effect on hippocampal reactive astrocytes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11534485 | PMC |
http://dx.doi.org/10.1538/expanim.24-0021 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!