Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Sorghum is a promising ingredient for new food products due to its high fiber content, slow digestibility, drought resistance, and gluten-free nature. One of the main challenges in sorghum-based products is the unpleasant aroma compounds found in grain sorghum. Therefore, in this study, sorghum flour was treated via supercritical carbon dioxide (SC-CO) to remove undesired aroma compounds. The resulting SC-CO-treated flours were used to generate dough for 3D food printing. At the optimized conditions, sorghum cookies were 3D-printed using 60 % water and a nozzle diameter of 1.5 mm. All dough samples produced with untreated and SC-CO-treated sorghum flours exhibited shear-thinning behavior. Changing the treatment pressure (8-15 MPa) or temperature (40-60 °C) did not significantly affect the viscosity of the dough samples. Moreover, the sorghum cookie doughs had higher G' and G″ values after the SC-CO treatments (G' > G″). Doughs generated from flours treated at 15 MPa - 40 °C and 8 MPa - 60 °C showed lower adhesiveness compared to the ones produced from untreated flour, whereas 15 MPa - 60 °C treatment did not affect the adhesiveness. After baking, the 3D-printed cookies from SC-CO-treated flour exhibited significantly lower redness (a*), but the hardness of the cookies was not affected by SC-CO treatment. Overall, the SC-CO treatment of sorghum flour did not negatively affect the quality parameters of the 3D-printed cookies while enhancing the aroma of the flour.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2024.114588 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!