The Cerrado is one of the most biodiverse biomes in the world, characterized by a wealth of native fruits with unique nutritional characteristics. In this sense, the social, economic, and environmental importance of fully utilizing food is widely recognized. Therefore, generally considered waste, fruit shells can be transformed into a coproduct with high added value. The objective of this work was to carry out a comprehensive assessment of the physicochemical properties, carbohydrate and fatty acid profile, phytochemical compounds, phenolic profile, and antioxidant potential of the recovered extracts of buriti (Mauritia flexuosa) shells in natura and dehydrated at 55 °C (flour). In addition, the functional properties were verified by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) from buriti shell flour. The results indicated high fiber content and energy value for the sample processed at 55 °C (58.95 g/100 g and 378.91 kcal/100 g, respectively) and low lipid and protein content (1.03 g/100 g and 1.39 g/100 g, respectively). Regardless of the sample analyzed, maltose was the majority sugar (37.33 - 281.01 g/100 g). The main fatty acids detected were oleic acid (61.33 - 62.08 %) followed by palmitic acid (33.91 - 34.40 %). The analysis of the mineral profile demonstrated that the samples did not differ significantly from each other, showing that the drying process did not interfere with the results obtained (p ≤ 0.05). The analysis of individual phenolics allowed the identification of six phenolic compounds in buriti shells. However, it is possible to observe that the drying method had a positive and significant influence on the phenolic profile (p ≤ 0.05), with chlorogenic acid (2.63 - 8.27 mg/100 g) and trigonelline (1.06 - 41.52 mg/100 g), the majority compounds. On the other hand, it is important to highlight that buriti shells have a high content of carotenoids, mainly β-carotene (27.18 - 62.94 µg/100 g) and α-carotene (18.23 - 60.28 µg/100 g), also being positively influenced by the drying process at 55 °C (p ≤ 0.05). The dried shells showed a high content of phytochemical compounds and high antioxidant activity based on the different methods tested. The results show that buriti shell flour can be fully utilized and has nutritional and chemical aspects that can be applied to develop new sustainable, nutritious, and functional food formulations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2024.114578DOI Listing

Publication Analysis

Top Keywords

shell flour
12
buriti mauritia
8
mauritia flexuosa
8
profile antioxidant
8
antioxidant potential
8
phytochemical compounds
8
phenolic profile
8
buriti shell
8
drying process
8
buriti shells
8

Similar Publications

Development of Simple and Rapid Bead-Based Cytometric Immunoassays Using Superparamagnetic Hybrid Core-Shell Microparticles.

ACS Meas Sci Au

December 2024

Chemical and Optical Sensing Division, Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Str. 11, Berlin D-12489, Germany.

Flow cytometry-based immunoassays are valuable in biomedical research and clinical applications due to their high throughput and multianalyte capability, but their adoption in areas such as food safety and environmental monitoring is limited by long assay times and complex workflows. Rapid, simplified bead-based cytometric immunoassays are needed to make these methods viable for point-of-need applications, especially with the increasing accessibility of miniaturized cytometers. This work introduces superparamagnetic hybrid polystyrene-silica core-shell microparticles as promising alternatives to conventional polymer beads in competitive cytometric immunoassays.

View Article and Find Full Text PDF

Transformations of phenolic compounds in cocoa shell during colonic fermentation.

Curr Res Food Sci

November 2024

Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049, Madrid, Spain.

Cocoa shell is a by-product generated by the cocoa processing industry, notable for its high content of phenolic compounds and methylxanthines, and recognized for their biological properties. The majority of cocoa phenolic compounds are not absorbed in the small intestine and reach the colon, where they can be catabolized by the gut microbiota, influencing their bioavailability and bioactivity. This research aimed to study the changes that phenolic compounds from cocoa shell flour (CSF) and extract (CSE) undergo during colonic fermentation after gastrointestinal digestion, using an model and a targeted metabolomics approach.

View Article and Find Full Text PDF

This article presents a comprehensive overview of upcycling commercial nut byproducts (such as Brazil nut, cashew, hazelnut, macadamia, peanut (also known as a legume), pecan, pine nut, pistachio, and walnut) for food, nutraceutical, and pharmaceutical applications. Upcycling nut byproducts, namely husk/hull, hard shell, brown skin, defatted flour/meal/cake, pine cone, cashew nut shell liquid, cashew apple, walnut septum, and dreg/okara, has great potential, not only to reduce/minimise waste, but also to fit within the circular economy concept. Each byproduct has its own unique functional properties, which can bring significant value.

View Article and Find Full Text PDF

Cocoa shell ingredients improve their lipid-lowering properties under simulated digestion: In vitro and HepG2 cells study.

Food Res Int

November 2024

Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049 Madrid, Spain; Institute of Food Science Research, CIAL (UAM-CSIC), 28049 Madrid, Spain. Electronic address:

Cocoa (Theobroma cacao) shell, the main by-product of cocoa industry, is associated with the regulation of several biomarkers of metabolic syndrome. However, there is little information about the digestion effect on the physiological properties of cocoa shell. The aim of this study was to assess the impact of a standardized in vitro digestion protocol on the hypolipidemic capacity of two cocoa shell ingredients, a flour (CSF) and an aqueous extract (CSE), through the evaluation of their in vitro hypolipidemic properties and lipid-lowering effects in HepG2 cells.

View Article and Find Full Text PDF

Bio-composites from barley, wheat, and cassava flours reinforced with oil palm residues: Characterization and tensile mechanical performance.

Heliyon

November 2024

Centro de Investigaciones Aplicadas a Polímeros, Departamento de Ciencias de los Alimentos y Biotecnología, Escuela Politécnica Nacional, Quito, 170517, Ecuador.

This study explores the production of bio-composites from barley, wheat, and cassava flours, reinforced with varying ratios of oil palm residues. The research emphasizes principles of circular economy and sustainability. Both flours and reinforcements underwent characterization to elucidate how their physicochemical properties affect the mechanical behavior of the bio-composites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!