The quinoid component of humic acids (HAs) had been studied as exogenous electron mediators (EMs), but the redox-mediating abilities of other functional groups remained unclear. This study evaluated the effects of various HAs functional groups on cellular respiration and extracellular electron transfer. The three EMs increased the current density compared to the control. Current density increased significantly after adding ultraviolet-irradiated HAs (UV-HAs), suggesting that nitrogenous group-mediated redox reactions contributed to high-density current generation. Structural equation model (SEM) results indicated that the contribution of nitrogen-containing groups to electron transfer could exceed 20%. This study proposed a synergistic mechanism: in the soil microbial fuel cells (soil-MFCs), HAs accelerated their component evolution through irreversible redox reactions and promoted extracellular electron transfer. Additionally, HAs-induced high expression of c-Cyts could further enhance high-density current generation. This study demonstrates that humic acids enhance electron transfer and current in bioelectrochemical systems, aiding sustainable energy optimization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2024.131057 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!