Lipid nanoparticle encapsulated oleic acid induced lipotoxicity to hepatocytes via ROS overload and the DDIT3/BCL2/BAX/Caspases signaling in vitro and in vivo.

Free Radic Biol Med

Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong Province, China. Electronic address:

Published: September 2024

Background: To date, Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver disease associated with clinical complications. Dietary fatty acids have been suggested to be involved in preventing or reversing the accumulation of hepatic fat. However, contradicting roles of monounsaturated fatty acids to the liver have been implicated in various human and murine models, mainly due to the insolubility nature of fatty acids.

Methods: High pressure homogenization methods were used to fabricate oleic acid embedded lipid nanoparticles (OALNs). The in vitro and in vivo models were used to validate the physiological effect of this OALNs via various cellular and molecular approaches including cell viability essay, fluorescent staining, electron microscope, RNAseq, qPCR, Western blots, and IHC staining.

Results: We successfully fabricated OALNs with enhanced stability and solubility. More importantly, lipid accumulation was successfully induced in hepatocytes via the application of OALNs in a dose-dependent manner. Overload of OALNs resulted in ROS accumulation and apoptosis of hepatocytes dose-dependently. With the help of transcriptome sequencing and traditional experimental approaches, we demonstrated that the lipotoxic effect induced by OALNs was exerted via the DDIT3/BCL2/BAX/Caspases signaling. Moreover, we also verified that OALNs induced steatosis and subsequent apoptosis in the liver of mice via the activation of DDIT3 in vivo.

Conclusions: In all, our results established a potential pathogenic model of NAFLD for further studies and indicated the possible involvement of DDIT3 signaling in abnormal steatosis process of the liver.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2024.06.024DOI Listing

Publication Analysis

Top Keywords

oleic acid
8
ddit3/bcl2/bax/caspases signaling
8
vitro vivo
8
liver disease
8
fatty acids
8
oalns
7
liver
5
lipid nanoparticle
4
nanoparticle encapsulated
4
encapsulated oleic
4

Similar Publications

In this study, the AlFeO@n-Pr@Et-SOH heterogeneous catalyst was successfully synthesized and utilized to produce biodiesel from oleic acid through an esterification process and to oxidize sulfides. To examine the physicochemical characteristics of the AlFeO@n-Pr@Et-SOH nanomaterial, a variety of advanced techniques were employed, including Fourier Transform infrared spectroscopy (FT-IR), Field emission scanning electron microscopy (FE-SEM), Energy dispersive X-ray spectroscopy (EDX), Vibrating sample magnetometer (VSM), Elemental Mapping, Transmission electron microscopy (TEM), Inductively coupled plasma (ICP), and X-ray diffraction (XRD). The AlFeO@n-Pr@Et-SOH materials demonstrated excellent performance in both the esterification of oleic acid and the oxidation of sulfides.

View Article and Find Full Text PDF

Dimeric guaianolide sesquiterpenoids from the flowers of Chrysanthemum indicum ameliorate hepatic steatosis through mitigating SIRT1-mediated lipid accumulation and ferroptosis.

J Adv Res

January 2025

State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao 999078, China; Guangdong-Hong Kong-Macau Join Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, University of Macau, Avenida da Universidade, Taipa, Macao 999078, China; Department of Pharmaceutical Sciences and Technology, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macao 999078, China. Electronic address:

Introduction: Non-alcoholic fatty liver disease (NAFLD) acts as the primary contributor to non-alcoholic steatohepatitis, fibrosis, cirrhosis, and potentially hepatocellular carcinoma. The flowers of Chrysanthemum indicum, a traditional edible medicinal herb, have been widely used in China for more than 2000 years. However, the function of C.

View Article and Find Full Text PDF

Reduced lipid and glucose oxidation and reduced lipid synthesis in AMPKα2 myotubes.

Arch Physiol Biochem

January 2025

Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway.

Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) plays a crucial role in regulation of metabolic homeostasis. To understand the role of the catalytic α2 subunit of AMPK in skeletal muscle energy metabolism, myotube cultures were established from and mice. Myotubes from mice had lower basal oleic acid and glucose oxidation compared to myotubes from mice.

View Article and Find Full Text PDF

The increasing demand for magnetic iron oxide nanoparticles (IONPs) in biomedicine necessitates efficient and scalable production methods. Thermal decomposition offers excellent tailoring of the particle properties but its discontinuous batch-operation is restricting scale-up and industrial application. To overcome these challenges, several studies have demonstrated semi-continuous thermal decomposition by slowly injecting the precursor, though only half of them produce magnetite IONPs and even fewer use iron oleate precursors.

View Article and Find Full Text PDF

Metabolic Atlas of Human Eyelid Infiltrative Basal Cell Carcinoma.

Invest Ophthalmol Vis Sci

January 2025

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.

Purpose: Eyelid infiltrative basal cell carcinoma (iBCC) is the most common malignant tumor affecting the ocular adnexa, but studies on metabolic changes within its microenvironment and heterogeneity at the tumor invasive area are limited. This study aims to analyze metabolic differences among iBCC cell types using single-cell and spatial metabolomics analysis and to examine metabolic environment at the tumor invasive area.

Methods: Single-cell transcriptomic data of human basal cell carcinoma (BCC) were clustered and visualized using Uniform Manifold Approximation and Projection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!