A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A glucomannan produced by Bacillus velezensis HY23 and its growth promoting effect on soybeans under salt stress. | LitMetric

A glucomannan produced by Bacillus velezensis HY23 and its growth promoting effect on soybeans under salt stress.

Int J Biol Macromol

Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China. Electronic address:

Published: August 2024

The Bacillus genus is widely distributed in nature, has bacteriostatic and growth-promoting activities, and has broad application potential in agriculture. An exopolysaccharide (EPS) was extracted and purified from Bacillus velezensis HY23. Structural characterisation of the EPS was performed by chemical and spectroscopic analyses. Methylation analysis showed that the EPS of HY23 was composed of mannose and glucose at a ratio of 82:18 and was identified as glucomannan. Combined with the nuclear magnetic resonance (NMR) analysis, EPS from HY23 had a backbone of →2)-α-D-Manp-(1 → and →2,6)-α-D-Manp-(1 → branched at C-6 with terminal α-(3-O-Me)-D-Manp-(1 → and →6)-α-D-Manp-(1 → residues as the side chain. A certain amount of β-D-Glcp residues were also present in backbone. Moreover, EPS significantly improved the nitrogen-fixing activity and salt resistance of soybean seedlings by regulating the antioxidant pool and expression of ion transporters. These findings indicate that EPS from B. velezensis HY23 is a potential biostimulant for enhancing plant resistance to salt stress.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.133474DOI Listing

Publication Analysis

Top Keywords

velezensis hy23
12
bacillus velezensis
8
salt stress
8
analysis eps
8
eps hy23
8
eps
6
hy23
5
glucomannan produced
4
produced bacillus
4
hy23 growth
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!