Petroleum-based packaging materials are nondegradable and unsustainable and thus are harmful to the environment. Renewable packaging films prepared from bio-based raw materials are promising alternatives to petroleum-based packaging materials. In this study, colorless and transparent bio-based films were successfully cast using a solution containing a mixture of arabinogalactan (AG) and poly (vinyl alcohol) (PVA). Vanillin was incorporated into the mixture to endow the films with UV-shielding, antioxidant, and antibacterial properties. The morphological, physical, antioxidant, and antibacterial properties of the blend films were then characterized. At an AG:PVA weight ratio of 1:3, and the vanillin content was 0.15 %, the tensile strength of the AG/PVA/Vanillin (APV) films reached ~28 MPa, while their elongation at break reached ~475 %. The addition of vanillin significantly affected the antioxidant and antibacterial properties of the blend films, which exhibited superb UV barrier capacity. The APV films exhibited extremely low oxygen transmittance, delaying the onset of mold/rot in strawberries and reducing their weight loss. Because of the heat sealability of the blend films, they can be used for encapsulating various substances, such as concentrated laundry liquid. Moreover, the blend films were recyclable and biodegradable. Thus, these films have great potential for applications that require sustainable packaging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.133535 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!