Removal of 39 contaminants of emerging concern found in wastewater effluent by coupling nanofiltration and infiltration into saturated soil column.

Chemosphere

Institut Européen des Membranes, Université de Montpellier 2, ENSCM, CNR UMR 5635, 300 Avenue du Professeur Emile Jeanbrau, 34090, Montpellier, France. Electronic address:

Published: September 2024

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2024.142705DOI Listing

Publication Analysis

Top Keywords

removal contaminants
4
contaminants emerging
4
emerging concern
4
concern wastewater
4
wastewater effluent
4
effluent coupling
4
coupling nanofiltration
4
nanofiltration infiltration
4
infiltration saturated
4
saturated soil
4

Similar Publications

Per- and polyfluoroalkyl substances (PFASs) have recently garnered considerable concerns regarding their impacts on human and ecological health. Despite the important roles of polyamide membranes in remediating PFASs-contaminated water, the governing factors influencing PFAS transport across these membranes remain elusive. In this study, we investigate PFAS rejection by polyamide membranes using two machine learning (ML) models, namely XGBoost and multimodal transformer models.

View Article and Find Full Text PDF

Strongly coordinating mediator enables single-step resource recovery from heavy metal-organic complexes in wastewater.

Nat Commun

December 2024

State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China.

Heavy metals complexed with organic ligands are among the most critical carcinogens threatening global water safety. The challenge of efficiently and cost-effectively removing and recovering these metals has long eluded existing technologies. Here, we show a strategy of coordinating mediator-based electro-reduction (CMBER) for the single-step recovery of heavy metals from wastewater contaminated with heavy metal-organic complexes.

View Article and Find Full Text PDF

Insights and perspectives of chitosan-based hydrogels for the removal of heavy metals and dyes from wastewater.

Int J Biol Macromol

December 2024

School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266525, China. Electronic address:

Water pollution has become an increasingly serious issue, necessitating the design and development of more effective wastewater treatment methods. Chitosan-based hydrogels, owing to their unique structural and chemical properties, have demonstrated high efficiency in removing contaminants. However, the application remains restricted by the scarcity of effective adsorption sites and limited environmental stability.

View Article and Find Full Text PDF

Co-immobilization of laccase and zinc oxide nanoparticles onto bacterial cellulose to achieve synergistic effect of photo and enzymatic catalysis for biodegradation of favipiravir.

Int J Biol Macromol

December 2024

Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, P.O. Box 48175-861, Sari 4847193698, Iran; Thalassemia Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran. Electronic address:

The environmental persistence of pharmaceuticals represents a significant threat to aquatic ecosystems and human health, while limitations in conventional wastewater treatment methods underscore the urgent need for innovative and eco-friendly degradation strategies. Photobiocatalytic approaches provide a promising solution for the effective degradation of pharmaceutical contaminants by harnessing the synergistic effects of both photocatalysts and biocatalysts. In this study, we developed a photobiocatalytic composite by co-immobilizing laccase enzyme and zinc oxide nanoparticles on bacterial cellulose synthesized from orange peel waste.

View Article and Find Full Text PDF

The improper handling and uncontrolled discharge of toxic organic dyes result in significant adverse effects on both human health and the environment. This study investigates the fabrication of SnO₂, yttrium and cobalt dual-doped SnO₂ (YCSn), chitosan-capped SnO₂ (CS*Sn), and chitosan-capped yttrium and cobalt dual-doped SnO₂ (CS*YCSn) nanoparticles using a one-step coprecipitation method for the photocatalytic degradation of methylene blue (MB) under visible light irradiation. Characterization techniques including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), high-resolution transmission electron microscopy (HRTEM), and ultraviolet-visible (UV-Vis) spectrophotometry confirm the successful synthesis of biodegradable CS*YCSn nanoparticles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!