Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.15403/jgld-5578 | DOI Listing |
Regen Biomater
December 2024
Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China.
Injury caused by excess reactive oxygen species (ROS) may lead to susceptibility to bacterial infection and sustained inflammatory response, which are the major factors impeding diabetic wound healing. By utilizing optimal anti-inflammatory, antioxidant and antibacterial biomaterials for multifunctional wound dressings is critical in clinical applications. In this study, a novel electrospun PLGA/MoS@Pd nanofiber membrane was synthesized by encapsulating antioxidant and near-infrared (NIR) responsive MOS@Pd nanozymes in PLGA nanofibers to form a multifunctional dressing for diabetic wound repair.
View Article and Find Full Text PDFF1000Res
January 2025
Department of Human Pathology, University of Nairobi, Nairobi, Nairobi County, Kenya.
Background: Bacterial infections in the Intensive Care Units are a threat to the lives of critically ill patients. Their vulnerable immunity predisposes them to developing bacteria-associated sepsis, deteriorating their already fragile health. In the face of increasing antibiotics resistance, the problem of bacterial infection in ICU is worsening.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Chemistry and Biotechnology; School of Science, Computing & Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.
Despite their widespread utilization in biomedical applications, these synthetic materials can be susceptible to microbial contamination, potentially compromising their functionality and increasing the risk of infection in patients. In this study, molybdenum (Mo), an essential metal in biological systems, was investigated as a Mo-based cold-sprayed coating on poly(dimethylsiloxane) (PDMS) for its potential use as biocompatible and antimicrobial surfaces for biomedical applications. Various cold-spray parameters were employed in the fabrication of Mo-embedded PDMS surfaces to alter the surface structure of the substrate, Mo loading density, and embedding layer thickness.
View Article and Find Full Text PDFFood Res Int
February 2025
College of Food Science, Southwest University, Chongqing 400715, PR China. Electronic address:
This study applied high hydrostatic pressure (HHP) treatment to buffalo milk casein to assess the influence of different pressure levels on its structural characteristics, physicochemical properties, and functional properties. The results showed that although HHP had no marked impact on the zeta potential and secondary structure, it altered the protein's spatial structure (primarily its tertiary structure), and improved dispersion properties (such as particle size, solubility, and turbidity), as well as foaming properties. Additionally, HHP improved the antioxidant activity and antibacterial activity against Escherichia coli.
View Article and Find Full Text PDFBMC Infect Dis
January 2025
Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santé, Ouagdougou, 11 BP218, Burkina Faso.
Background: Extended-spectrum β-lactamase-producing Enterobacterales (ESBL-PE), particularly Escherichia coli and Klebsiella pneumoniae, have been consistently associated with treatment failure, high mortality and morbidity. The emergence of carbapenem resistance among ESBL-PE strains exacerbates the antimicrobial resistance. However, data are very limited in developing countries as Burkina Faso.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!