Affordances are opportunities for action for a given animal (or animals) in a given environment or situation. The concept of affordance has been widely adopted in the behavioral sciences, but important questions remain. We propose a new way of understanding the nature of affordances; in particular, how affordances are related to one another. We claim that many - perhaps most - affordances emerge from non-additive relations among other affordances, such that some affordances are of higher order relative to other affordances. That is, we propose that affordances form a continuous category of perceiveables that differ only in whether and how they relate to other affordances. We argue that: (1) opportunities for behaviors of all kinds can be described as affordances, (2) some affordances emerge from relations between animal and environment, whereas most affordances emerge from relations between other affordances, and (3) all affordances lawfully structure ambient energy arrays and, therefore, can be perceived directly. Our concept of higher order affordances provides a general account of behavioral phenomena that traditionally have been interpreted in terms of cognitive processes (e.g., remembering or imagining) as well as behavioral phenomena that have traditionally been interpreted in terms of cultural rules, such as conventions, or customs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3758/s13423-024-02535-y | DOI Listing |
Biol Psychol
January 2025
Institute of Psychology, Jagiellonian University, Kraków, Poland.
A classical observation in experimental psychology is a reduction in reaction time and response accuracy under time pressure (TP). This speed-accuracy tradeoff may be understood from the combined perspectives of affordance competition and urgency gating. This view implies that action programs compete with each other from stimulus onset until the final response.
View Article and Find Full Text PDFBiol Cybern
January 2025
CIAMS, Université Paris-Saclay, Orsay & Université d'Orléans, Orléans, France.
According to the Projective Consciousness Model (PCM), in human spatial awareness, 3-dimensional projective geometry structures information integration and action planning through perspective taking within an internal representation space. The way different perspectives are related to and transform a world model defines a specific perception and imagination scheme. In mathematics, such a collection of transformations corresponds to a 'group', whose 'actions' characterize the geometry of a space.
View Article and Find Full Text PDFNeural Netw
January 2025
Institute of Cognitive Sciences and Technologies, National Research Council, Padova, Italy. Electronic address:
By dynamic planning, we refer to the ability of the human brain to infer and impose motor trajectories related to cognitive decisions. A recent paradigm, active inference, brings fundamental insights into the adaptation of biological organisms, constantly striving to minimize prediction errors to restrict themselves to life-compatible states. Over the past years, many studies have shown how human and animal behaviors could be explained in terms of active inference - either as discrete decision-making or continuous motor control - inspiring innovative solutions in robotics and artificial intelligence.
View Article and Find Full Text PDFCan Med Educ J
December 2024
Department of Medical Education, University of Illinois College of Medicine, Illinois, USA.
Background: Cognitive integration occurs when trainees make conceptual connections between relevant knowledges and is known to improve learning. While several experimental studies have demonstrated how text and audio-visual instruction can be designed to enhance cognitive integration, clinical skills training in real-world contexts may require alternative educational strategies. Introducing three-dimensional (3D) printed models during clinical skills instruction may offer unique learning opportunities to support cognitive integration.
View Article and Find Full Text PDFNeurosci Biobehav Rev
January 2025
Department of Psychology, University of Turin, Turin, Italy; Department of Medical and Clinical Psychology, Tilburg University, Netherlands; Centro Linceo Interdisciplinare "Beniamino Segre", Accademia Nazionale dei Lincei, Roma, Italy. Electronic address:
Fear responses to novel stimuli can be learned directly, through personal experiences (Fear Conditioning, FC), or indirectly, by observing conspecific reactions to a stimulus (Social Fear Learning, SFL). Although substantial knowledge exists about FC and SFL in humans and other species, they are typically conceived as mechanisms that engage separate neural networks and operate at different levels of complexity. Here, we propose a broader framework that links these two fear learning modes by supporting the view that social signals may act as unconditioned stimuli during SFL.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!