Antisymmetric planar Hall effect in rutile oxide films induced by the Lorentz force.

Sci Bull (Beijing)

Department of Physics, State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China; Shanghai Research Center for Quantum Sciences, Shanghai 201315, China; Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, Shanghai 200433, China. Electronic address:

Published: August 2024

The conventional Hall effect is linearly proportional to the field component or magnetization component perpendicular to a film. Despite the increasing theoretical proposals on the Hall effect to the in-plane field or magnetization in various special systems induced by the Berry curvature, such an unconventional Hall effect has only been experimentally reported in Weyl semimetals and in a heterodimensional superlattice. Here, we report an unambiguous experimental observation of the antisymmetric planar Hall effect (APHE) with respect to the in-plane magnetic field in centrosymmetric rutile RuO and IrO single-crystal films. The measured Hall resistivity is found to be linearly proportional to the component of the applied in-plane magnetic field along a particular crystal axis and to be independent of the current direction or temperature. Both the experimental observations and theoretical calculations confirm that the APHE in rutile oxide films is induced by the Lorentz force. Our findings can be generalized to ferromagnetic materials for the discovery of anomalous Hall effects and quantum anomalous Hall effects induced by in-plane magnetization. In addition to significantly expanding knowledge of the Hall effect, this work opens the door to explore new members in the Hall effect family.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scib.2024.06.009DOI Listing

Publication Analysis

Top Keywords

hall
10
antisymmetric planar
8
planar hall
8
rutile oxide
8
oxide films
8
films induced
8
induced lorentz
8
lorentz force
8
linearly proportional
8
in-plane magnetic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!