The incorporation of leucine (Leu), a hydrophobic amino acid, into pharmaceutically relevant particles via spray-drying can improve the physicochemical and particulate properties, stability, and ultimately bioavailability of the final product. More specifically, Leu has been proposed to form a shell on the surface of spray-dried (SD) particles. The aim of this study was to explore the potential of Leu in the SD protein/trehalose (Tre) formulation to control the water uptake and moisture-induced recrystallization of amorphous Tre, using lysozyme (LZM) as a model protein. LZM/Tre (1:1, w/w) was dissolved in water with varied amounts of Leu (0 - 40%, w/w) and processed by spray-drying. The solid form, residual moisture content (RMC), hygroscopicity, and morphology of SD LZM/Tre/Leu powders were evaluated, before and after storage under 22°C/55% RH conditions for 90 and 180 days. The X-ray powder diffraction results showed that Leu was in crystalline form when the amount of Leu in the formulation was at least 20% (w/w). Thermo-gravimetric analysis and scanning electron microscopy results showed that 0%, 5%, and 10% (w/w) Leu formulations led to comparable RMC and raisin-like round particles. In contrast, higher Leu contents resulted in a lower RMC and increased surface corrugation of the SD particles. Dynamic vapor sorption analysis showed that partial recrystallization of amorphous Tre to crystalline Tre·dihydrate occurred in the 0% Leu formulation. However, adding as little as 5% (w/w) Leu inhibited this recrystallization during the water sorption/desorption cycle. In addition, after storage, the formulations with higher Leu contents showed reduced water uptake. Instead of observing recrystallization of amorphous Tre in 0%, 5%, and 10% (w/w) Leu formulations, recrystallization of amorphous Leu was noted in the 5% and 10% (w/w) Leu formulations after storage. In summary, our study demonstrated that the addition of Leu has the potential to reduce water uptake and inhibit moisture-induced recrystallization of amorphous Tre in the SD protein/Tre powder system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.xphs.2024.06.018 | DOI Listing |
Pharm Res
January 2025
Solid State Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India.
Improving the bioavailability of poorly water-soluble drugs presents a significant challenge in pharmaceutical development. Amorphous solid dispersions (ASDs) have garnered substantial attention for their capability to augment the solubility and dissolution rate of poorly water-soluble drugs, thereby markedly enhancing their bioavailability. ASDs, characterized by a metastable equilibrium where the active pharmaceutical ingredient (API) is molecularly dispersed, offer enhanced absorption compared to crystalline forms.
View Article and Find Full Text PDFSci Rep
January 2025
College of Mechanical and Transportation Engineering, Southwest Forestry University, Kunming, 650224, China.
The current piston material, Al-12Si, lacks sufficient passivation in the acidic lubrication system of biodiesel engines, making it prone to corrosion in the presence of Cl. Fe amorphous particles exhibit good compatibility with Al-12Si, possessing strong corrosion resistance, excellent passivation ability, and good high-temperature stability. They are a potential reinforcement for enhancing the Al-12Si piston material.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Institute of Pharmacy and Biotechnology, Peoples' Friendship University of Russia n.a. P. Lumumba (RUDN), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia.
Amorphous solid dispersion (ASD) technology is often used as a promising strategy to improve the solubility of active pharmaceutical ingredients (APIs). ASDs allow APIs to be dispersed at the molecular level in a polymer carrier, destroying the crystalline structure of the APIs and, thanks to the polymer, providing long-term supersaturation in solution. However, stability issues are an obstacle to the development of new medications with ASD.
View Article and Find Full Text PDFMolecules
January 2025
Department of Physical Chemistry, Faculty of Chemical Technology, University of Pardubice, nam. Cs Legii 565, 532 10 Pardubice, Czech Republic.
The particle size-dependent processes of structural relaxation and crystal growth in amorphous nifedipine were studied by means of non-isothermal differential scanning calorimetry (DSC) and Raman microscopy. The enthalpy relaxation was described in terms of the Tool-Narayanaswamy-Moynihan model, with the relaxation motions exhibiting the activation energy of 279 kJ·mol for the temperature shift, but with a significantly higher value of ~500 kJ·mol being obtained for the rapid transition from the glassy to the undercooled liquid state (the latter is in agreement with the activation energy of the viscous flow). This may suggest different types of relaxation kinetics manifesting during slow and rapid heating, with only a certain portion of the relaxation motions occurring that are dependent on the parameters of a given temperature range and time frame.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy.
PEA 46 is a biobased polymer with promising properties for sustainable packaging applications, which can be obtained via polymerization of a furan 2,5-dicarboxylic acid (2,5-FDCA) derivative and a diol monomer containing internal amide bonds (46 amido diol). In the literature, PEA 46 showed a complex series of thermal transitions during DSC scans. For this reason, in this initial exploratory study PEA 46 was subjected to compression molding and the melting behavior of film samples was investigated with parallel DSC and WAXS analyses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!